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Abstract

A limitation of many explicit �nite-di�erence global climate models is the timestep restric-

tion caused by the decrease in cell size associated with the convergence of meridians near

the poles. A computational grid in which the number of cells in the longitudinal direction

is reduced toward high-latitudes, keeping the longitudinal width of the resulting cells as

uniform as possible and increasing the allowable timestep, is applied to a three-dimensional

primitive equation ocean-climate model. This \reduced" grid consists of subgrids which

interact at interfaces along their northern and southern boundaries, where the resolution

changes by a factor of three. Algorithms are developed to extend the �nite di�erence

techniques to this interface, focusing on the conservation required to perform long time

integrations, while preserving the staggered spatial arrangement of variables and the nu-

merics used on subgrids. The reduced grid eliminates the common alternative of �ltering

high-frequency modes from the solution at high-latitudes to allow a larger timestep and

reduces execution time per model step by roughly 20 percent. The reduced grid model is

implemented for parallel computer architectures with two-dimensional domain decomposi-

tion and message passing, with speedup results comparable to those of the original model.

Both idealized and realistic model runs are presented to show the e�ect of the interface

numerics on the model solution. First, a rectangular, mid-latitude, 
at-bottomed basin

with vertical walls at the boundaries is driven only by surface wind stress to compare
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three resolutions of the standard grid to reduced grid cases which use various interface

conditions. Next, a similar basin with wind stress, heat, and fresh water forcing is used to

compare the results of a reduced grid with those of a standard grid result while exercising

the full set of model equations. Finally, global model runs, with topography, forcing, and

physical parameters similar to those used for ocean-climate studies, are advanced to a near

equilibrium state for both the reduced grid and the standard grid. Di�erences between the

two are presented for typical �elds of interest, and very little degradation of the solution

due to the reduced grid is observed.
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Chapter 1

Introduction

Our planet is largely covered by a shallow layer of water that is gathered into large,

connected basins. The sun, warming both the atmosphere and the water itself, provides

energy which drives circulation of the waters through wind stresses, heating, and the

addition and removal of water. The resulting general circulation is a basin scale 
ow

pattern with time scales of hundreds to thousands of years. There has long been interest

in understanding the workings of the world ocean. From transportation and military

strategy to �sheries and climatic in
uences, the ocean's currents and 
uid properties are

of vital importance to our knowledge of the planet and the e�ects our activities have on

it [71].

The human population is becoming increasingly aware of its ability to impact the

world around us. Extinction of species from pollution, large changes in ecosystems from

development, and impact on climate by fossil fuel emissions are some of the problems hu-

manity is learning to understand and limit. Man's impact on climate is currently driving

the greatest interest in the global ocean circulation [34]. The oceans act as a storage reser-

voir for both water and heat, as well as other materials of climatic importance, notably
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carbon dioxide. This reservoir interacts with the atmosphere in complex ways which some-

times reduces and sometimes strengthens changes to the system. The e�ects of increased

carbon dioxide in the atmosphere from fossil-fuel burning and the resulting changes to at-

mospheric processes cannot be accurately predicted without considering ocean-atmosphere

interactions [29].

In centuries past, observations compiled on ships yielded most of the available knowl-

edge about the sea. As better instruments have been developed, greater understanding of

the deeper realms of the oceans has been gained. Recently, satellite data acquisition has

given increased precision and quantities of some types of ocean data, such as surface height

and the extent of sea-ice [53]. Meanwhile, large strides have also been made in the theory

of the general circulation. Major features have been explained well by simpli�ed models,

and the governing equations have become better understood. Computers, however, have

proven invaluable in studying the complex system of equations that describe the oceans,

since analytic solutions are not possible for the full equations, nor even for simpli�ed forms

of the equations in realistic geometries [31].

Computational power has increased to a level which enables global ocean models and

global atmospheric models to be coupled together and integrated for times useful to the

basic understanding of human climate in
uence, i.e. for centuries of simulated time [25; 73].

However, these models are still computationally very expensive, and in order to run these

simulations, only features on the order of 100 kilometers can be explicitly resolved. At

the same time, other researchers have shown that much �ner resolution simulations are

possible which allow study of smaller scale features [60]. But for now these high-resolution

models are limited to smaller regions and simulation lengths. The amount of computer

power required to run numerical models remains a major limitation in the advancement
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of climate modeling and will likely remain so for the foreseeable future.

1.1 Overview

This dissertation describes the design and use of a method for reducing the computer

time needed to integrate a global ocean general circulation model. The Bryan-Cox type

model (see Chapter 2), and most other ocean models in use, solve the equations describing

the global ocean by the method of explicit �nite di�erences. In both ocean and atmosphere

models, the equations are generally solved in the natural coordinate system of spherical

coordinates where a position on the Earth is given by its latitude, longitude, and depth

or height from the surface. The combination of this coordinate system and explicit �nite

di�erence methods lead to what is termed the \pole problem."

The convergence of meridians toward the poles in spherical coordinates causes two

major problems. First, at the pole itself, the coordinate system has a singularity, with

direction becoming unde�ned. This can be handled in a few di�erent ways, including

averaging of neighboring velocities or using a mesh with variables arranged such that

there is no velocity point at the pole. It is handled quite simply in the model used here by

placing a land cell, i.e. a zero velocity point, at the pole. The second problem is due to the

dependence of the stability conditions from �nite di�erence numerics on the size of grid

cells. As the minimum cell size decreases, so too does the allowable timestep that can be

used in the model (see Section A.3). At the highest latitudes in the spherical system, the

grid cells have a width which is less than ten percent the size of the equatorial cells; this

forces the use of a timestep which is much smaller than that needed in most grid cells.

One method of allowing the use of larger timesteps without instability is the �ltering of
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Figure 1.1: A global reduced grid

high frequency components from the model solutions (see Section A.5). In this approach,

a timestep which would normally violate the stability criteria at high latitudes is used, and

the high-frequency components of the solution which would cause instability are removed

at each timestep via �ltering. This technique is frequently used in global ocean and

atmosphere models and is the standard con�guration of the model used as the starting

point of this work. Filtering is thus used in the control case of the global runs described

in this work in Chapter 5. Disadvantages of �ltering include the need for additional

computation, possible damage to the model solution, as well as poor scaling and diÆcult

load-balancing on parallel distributed memory computers.
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A method which will not only increase the allowable timesteps given by numerical

stability but also decrease the number of grid cells used by the model is here termed

the \reduced grid" method. On this grid, an example of which is shown in Figure 1.1,

the cell size is kept much more uniform by decreasing the number of grid cells in the

longitudinal direction as the pole is approached. Because the grid is only modi�ed at a

small number of latitudes, the numerics on the majority of the grid are unmodi�ed. Due to

the smaller number of grid cells and the lack of �ltering, less computation is required. The

interactions between regions of di�ering resolution are similar to those found in models

using composite meshes or mesh re�nement that can be found in 
uid dynamics and

engineering [3; 4; 64]. The design, implementation, and testing of a reduced grid method

in the Lawrence Livermore National Laboratory global ocean general circulation model is

the subject of this work.

Following this overview, previous work of a related nature is summarized. Then

Chapter 2 describes the basic ocean model, the solution method and numerics it uses, and

its implementation on parallel, distributed memory computer architectures. Chapter 3

then details the approach to implementing the reduced grid in this model, the modi�ca-

tions to the numerical algorithms required, and the modi�cations it requires on parallel

architectures. Model runs are presented in Chapter 4 and Chapter 5, which progress from

limited basin runs with minimal forcing to extended simulations of the global model with

realistic topography and forcing. Timing comparisons of the base model and the reduced

grid model, including parallel speedup are also given in Chapter 5. Then Chapter 6 gives

a summary of the results and ideas of what they might lead to in the future.
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1.2 Review of Previous Work

Ocean circulation models forced by both surface wind stress and buoyancy 
uxes have

been in use for over thirty years. In many ways they have followed the development of

atmospheric models which are used for weather and climate prediction [44]. Models which

have a global or nearly global domain have been in use for nearly twenty-�ve years [15; 68].

As computing power has grown, so has the ambition of modelers. Integration times of

simulations have grown, while spatial resolution has increased. The ever-present limita-

tion of computer resources has led to many novel methods for faster and more accurate

simulations [59].

There are other numerical techniques used in ocean and atmosphere modeling which

do not su�er from the timestep restriction caused by the spherical coordinate system.

These include the use of other coordinate systems, described in the following section, as

well as spectral methods, implicit methods, and �nite element methods. While atmo-

spheric models routinely make use of the spectral method (see [8] and [1]), no major

global ocean models use this method. However, Iskandarani et al. [35] combined the spec-

tral method with �nite elements in a model using the oceanic shallow-water equations.

They also tested both explicit and implicit time integration, �nding that the implicit

method takes more computation time. In general it is thought that implicit methods take

too much computation time for the large, nonlinear systems used in ocean modeling.

The two distinct categories of previous work which relate directly to the present work

are discussed in detail below. One deals with the reduction or elimination of the \pole

problem" associated with meshes in spherical coordinates. Approaches which have been

tested include modi�cations of the spherical polar system and projections of other co-
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ordinate systems onto the sphere. The other category is concerned with regular meshes

nested within one another to achieve 
exibility in the model resolution. Many nested

models have been created for use in regional modeling with the purpose of moving the

domain boundaries away from the region of interest without greatly increasing compu-

tational cost. In some models these nested grids are allowed to move in order to track

features of the solution.

1.2.1 Grids on the Sphere

As far back as 1959, Kuo and Nordo [38] integrated a simple atmosphere model over

one hemisphere with a grid using a Mercator projection and doubling of the grid spacing

at three latitudes moving northward. No details of the speci�c conditions at the interfaces

were given, and a computational instability prevented integration beyond �ve days. The

cause of the instability was speculated to be the grid coarsening, but no analysis was given.

A few years later, Gates and Riegel [27; 28] integrated barotropic 
ow equations over the

northern hemisphere on a grid whose longitudinal mesh spacing varied with latitude. The

jumps in mesh spacing were not always by integer factors, and they avoided the use of

interpolation by using a simpli�ed procedure for derivatives near the interface.

Kurihara [39], assuming that a homogeneous density of grid points on the globe was

a desirable property for a barotropic atmosphere model, created a grid system in which

the number of cells varied between each latitude row. This system was integrated for

sixteen days with conservation of model quantities. Following this, Holloway, Spelman,

and Manabe [33] addressed the problems they saw with the Kurihara grid. Suggesting

possible causes for the problems, they comment on the di�erence in phase speeds of waves

at each latitude. In response, they implemented a latitude-longitude grid with �ltering
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of all the model variables at high-latitudes to overcome the timestep restriction of the

convergence of meridians. The resulting model ran more slowly than the Kurihara model,

but their opinion was that the programming was easier than other global grid systems.

This is the method which came to be widely used in many �nite-di�erence ocean and

atmosphere models.

Browning, Hack, and Swarztrauber [9] compared two spectral transform methods to

a method which used �nite-di�erences on an overlapping stereographic coordinate system.

Then Rancic, Purser, and Mesinger [56] presented a shallow-water model using a com-

posite grid which is the mapping of a cube onto the surface of the sphere. Swarztrauber,

Williamson, and Drake [66] solved the shallow-water equations by transforming the two-

dimensional, spherical coordinate system to a three-dimensional, Cartesian coordinate

system in which the computation is limited to the surface of the sphere by projecting the

equations, gradients, and solution onto the surface. These methods of coordinate trans-

formation have been limited to simpler models, and no global solutions of the primitive

equations for ocean modeling have been performed with these methods in the literature.

Rasch [57] presented a new discretization of the two-dimensional transport equation

and applied it on a reduced grid. His reduced grid had a coarsening ratio of two and

no staggering of variables. Tests involving two-dimensional transport over the pole with

a constant wind �eld as well as a compact �eld undergoing solid-body rotation were

presented. No follow-up work has been published using the reduced grid in an application.

1.2.2 Nested Grids

Sobel [62] presented a variety of work with a nested atmospheric model, both in two

and three dimensions. A staggered grid was used, and model quantities were conserved.
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Multiple methods of smoothing were also used. Kurihara, Tripoli, and Bender [40] de-

scribed a movable, nested-mesh technique for primitive equations on an unstaggered mesh

which conserves mass, momentum, and internal energy. They applied this to a one-

dimensional shallow-water equation model, allowing the nested mesh to follow a pertur-

bation of the geopotential �eld. Then Zhang, Chang, Seaman, Warner, and Fritsch [76]

described a nested atmospheric mesoscale model which uses a staggered mesh with a re-

�nement ratio of three. At interfaces, solution tendencies were interpolated and damping

was applied, but mass and energy were not conserved. A procedure for dealing with terrain

for the di�ering grid resolutions was presented.

Spall and Holland [63] introduced a nested primitive equation model for oceanic ap-

plications and applied it to two test cases. Their model did not conserve quantities at the

interfaces of their nested grids, as they considered the smoothness of the solution passing

between grids to be more important for their application. They noted, however, that for

some applications, namely those requiring longer time integrations, conservation is likely

to be a more important issue. Similarly, Fox and Maskell [26] presented another nested

ocean model using a staggered grid with both horizontal and vertical re�nement of the

mesh. They too did not conserve quantities at the grid interfaces, focusing instead on

smoothness of the solution. A damping term was added at the interface to further provide

for smooth solutions in the vicinity of the interfaces. Ginis, Richardson, and Rothstein [30]

presented an ocean model with multiply-nested grids. Their model uses an unstaggered

grid, but does conserve mass, momentum, heat, and salinity at the interfaces. Similar

models are described in [47] and [41].

Finally, Blayo and Debreu [7] applied adaptive mesh re�nement (AMR) to the �eld

of ocean modeling. The mesh re�nement part of AMR is very similar to the present
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reduced grid method. Test cases using the shallow-water and quasi-geostrophic equations

were presented. They posed some interesting questions as to the possibility of using

AMR for long-time integrations of primitive equation ocean models, including dealing

with topography at di�erent re�nement levels and choosing the best criteria for re�nement.

They are planning to implement this technique in a limited basin, primitive equation model

soon. See [3], [4], [5], [6], and [43] for further information on AMR.

1.2.3 Comparison

All of the works described above have features similar to those of the present paper.

In the papers of Section 1.2.1, barotropic, primitive equation, or other geophysical models

have been developed using varying grid resolution or alternative grids to alleviate problems

with solution on the sphere. Those in Section 1.2.2 develop models containing grids with

varying resolution and interfaces between those grids. The present work is distinguished

by the combination of several factors: (1) use of full three-dimensional primitive equations;

(2) the \staggered mesh" arrangement of variables; (3) applicability to a global domain

and long time integrations; and (4) implementation on parallel computer architectures.

While some of these features are shared with the work described above, no previous work

has implemented a reduced grid in a parallel ocean model and successfully integrated this

model to equilibrium for a global domain.
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Chapter 2

The Ocean Model

Since the reduced grid method has been implemented in a mature ocean climate

model, the standard model will be described in this chapter. First the primitive equations

of the model are derived from the Navier-Stokes equations. Then the general solution

procedure to the model equations is presented. Next the numerical discretization is given

which implements this solution procedure. The method of implementation on parallel

computer architectures is then explained. This information will provide a reference for

later chapters and a basis with which to compare the reduced grid method.

The model used as the basis for this work is the Lawrence Livermore National Labora-

tory (LLNL) ocean general circulation model. This model is based on the Modular Ocean

Model (MOM) from the Geophysical Fluid Dynamics Laboratory (GFDL). This type of

ocean model is often referred to as a Bryan-Cox ocean model (see [11] and [15]) and is gen-

erally accepted as the most widely used type of ocean general circulation model. Details of

the LLNL ocean model and results from its use can be found in [13], [14], [19], [20], [21], [22],

[23], and [24]. A signi�cant feature of the climate model is its ability to operate eÆ-

ciently on many high-performance computer architectures with little to no modi�cation.
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See [25], [45], and [74] for performance and design issues.

2.1 The Primitive Equations

The primitive equations for the modeling of the general ocean circulation will be

derived here from the basic equations of 
uid dynamics. For a general discussion of these

basic equations, refer to [51] or [75]. The �rst equation is the continuity equation, i.e. the

equation for the conservation of mass,

@�

@t
= �r � �u: (2.1)

The Navier-Stokes equations describe the conservation of momentum and are given for a

cartesian coordinate system by

@ui

@t
+ uj

@ui

@xj
= �

1

�

@p

@xi
�
@�N

@xi
+ Fi; (2.2)

where F is the frictional force and �N is the gravitational potential. The conservation of

heat, salt, and chemical tracers are described by the more simple transport equation,

@T

@t
+ uj

@T

@xj
= D; (2.3)

where T is the tracer quantity, and D is a di�usion term. The density of the 
uid is related

to the temperature, salinity, and pressure by an equation of state, i.e. � = � (T; S; p).

See [29] for a discussion of the equation of state. The model uses the equation of state set

by the Joint Panel on Oceanographics Tables and Standards (UNESCO, 1981).

2.1.1 Equations of Motion in a Rotating Coordinate Frame

Since the Earth is rotating, it is convenient to convert the equations to a coordinate

system that is also rotating. Let 
 be the rotation vector of the Earth. Then for any
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vector, v, the transformation of the time rate of change of the vector from the rotating to

the inertial frame is given by

dva

dt
=
dv

dt
+
� v; (2.4)

where the subscript a denotes a vector in the inertial frame, while no subscript denotes a

vector in the rotating frame. Let r be the position vector of an arbitrary 
uid element.

According to the transformation

dra

dt
=
dr

dt
+
� r; (2.5)

so that the velocity seen in the nonrotating frame, dra=dt = ua, is equal to the velocity

seen in the rotating frame, dr=dt = u, plus the velocity of the 
uid element due to the

rotation. Then (2.5) can be written as

ua = u+
� r: (2.6)

Applying (2.4) to ua gives

dua

dt
=

d

dt
(u+
� r) + 
� (u+
� r) ; (2.7)

or,

dua

dt
=
du

dt
+ 2
� u+
� (
� r); (2.8)

where 
 is assumed to be constant. Thus, an observer in the rotating frame of reference

observes two additional acceleration terms. They are the Coriolis acceleration, 2
 � u,

and the centripetal acceleration, 
 � (
 � r). The centripetal acceleration term can be

written as


� (
� r) = �r�c (2.9)

where �c =
j
� rj2

2
:
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Putting the results (2.8) and (2.9) into the Navier-Stokes equations (2.2) gives

@ui

@t
+ uj

@ui

@xj
= �

1

�

@p

@xi
�
@�N

@xi
+ Fi � 2(
� u)i +

@�c

@xi
: (2.10)

Now the gravitional and centripetal potentials can be combined. Let

� = �N � �c (2.11)

and

g = �r�; (2.12)

so that (2.10) becomes

@ui

@t
+ uj

@ui

@xj
= �

1

�

@p

@xi
+ gi + Fi � 2(
� u)i: (2.13)

2.1.2 Equations of Motion in Spherical Coordinates

When describing a position on the Earth, it is customary to use a modi�ed form of

the standard spherical polar coordinates with position de�ned as (�; �; z), with

� = longitude increasing eastward

� = latitude increasing northward with 0 at equator

z = height increasing upwards with 0 at surface:

Then the velocities are given by

u = R cos�
@�

@t
(2.14)

v = R
@�

@t
(2.15)

w =
@z

@t
; (2.16)
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where R is the earth radius. With these de�nitions, the vector operators become

rq =
1

R cos�

@q

@�
�̂+

1

R

@q

@�
�̂+

@q

@z
ẑ (2.17)

r � v =
1

R cos�

@v�

@�
+

1

R cos�

@(v� cos�)

@�
+
@vz

@z
+
2vz

R
(2.18)

r2q =
1

R2 cos2 �

@2q

@�2
+

1

R2 cos�

@

@�

�
cos�

@q

@�

�
+
@2q

@z2
+

2

R

@q

@z
: (2.19)

De�ne the Coriolis parameters

f = 2
 sin� (2.20)

f 0 = 2
cos�; (2.21)

so that

2(
� u)� = f 0w � fv (2.22)

2(
� u)� = fu (2.23)

2(
� u)z = f 0u: (2.24)

Then the momentum equations become

Du

Dt
=

tan�

R
uv �

uw

R
+ fv � f 0w �

1

�R cos�

@p

@�
+ g� + F� (2.25)

Dv

Dt
= �

tan�

R
u2 �

vw

R
� fu�

1

�R

@p

@�
+ g� + F� (2.26)

Dw

Dt
=
u2

R
+
v2

R
� f 0u�

1

�

@p

@z
+ gz + Fz; (2.27)

where the material derivative, D
Dt
, is de�ned as

D

Dt
=

@

@t
+

u

R cos�

@

@�
+
v

R

@

@�
+ w

@

@z
: (2.28)

2.1.3 Approximations for Ocean Modeling

Now the equations are in a form that is useful for describing motion on a rotating

sphere, but they are still too complex for modeling purposes. There are, however, a

number of approximations that can be made in order to simplify them.
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First, note that the horizontal components of the gravitational acceleration, i.e. g�

and g�, are very small compared to the other terms in the horizontal momentum equations,

and can therefore be neglected.

The vertical scale of the motion is everywhere much smaller than the radius of the

earth, so that the gravitational acceleration may be assumed to be constant with depth.

The density of seawater is very nearly constant throughout the ocean, so an approxi-

mation, known as the Boussinesq approximation, can be made in which � = �0 = constant

in all terms except for the buoyancy term, gz. In that term, � is calculated by an equation

of state which relates it to the temperature and salinity. With this approximation, the

continuity equation, (2.1), expressed in spherical coordinates becomes

r � u =
@w

@z
+
2w

R
+

1

R cos�

@(v cos�)

@�
+

1

R cos�

@u

@�
= 0: (2.29)

Physically, the approximation � = �0 means that this equation now expressed conservation

of volume, not mass.

The turbulent viscosity hypothesis is used to represent sub-grid scale motions, that

is, motions that are too small to be resolved by the grid. Ordinary viscosity is a very much

smaller e�ect and is consequently ignored. Thus the transfer of energy to these smaller

scale motions is modeled as viscous terms of the form,

Fi =
1

�

@�ji

@xj
= rh � (Arhui) +

@

@z

�
�
@ui

@z

�
: (2.30)

Then using all of the approximations so far, the equations of motion become

Du

Dt
=

tan�

R
uv �

uw

R
+ fv � f 0w �

1

�0R cos�

@p

@�
+ F� (2.31)

Dv

Dt
= �

tan�

R
u2 �

vw

R
� fu�

1

�0R

@p

@�
+ F� (2.32)

Dw

Dt
=
u2

R
+
v2

R
� f 0u�

1

�o

@p

@z
�

�

�0
g + Fz: (2.33)
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It will be useful to estimate which terms in the equations are the largest and most

in
uential for the present purposes to determine the possibility of even more simpli�cation.

Thus the relative sizes of the remaining terms should be compared. In order to do so,

some characteristic scales of the ocean must be known. This will be done in the next

section.

2.1.4 Scaling of the Equations of Motion

The following list consists of representative scales of motion from observed values:

horizontal length scale = L � 106 m

depth scale = H � 4� 103 m

horizontal velocity scale = U � 10�1 m s�1

vertical velocity scale =W � 10�4 m s�1

horizontal pressure scale = �ph � 103 Pa

vertical pressure scale = �pv � 4� 104 Pa

time scale = t � L=U � 107 s

With f � 10�4 at midlatitudes, and typical values (for modeling purposes) of A and �

being 103 to 104 m s�2 and 2� 10�3 m s�2, respectively, then approximations for various

terms in (2.31) through (2.33) are

�
Du

Dt
;
Dv

Dt

�
�
U2

L
� 10�8�

Dw

Dt

�
�
UW

L
� 10�11

�
fu; fv; f 0u

�
� fU � 10�5

�
f 0w

�
� fW � 10�8
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�
tan�

R
uv;

tan�

R
u2;

u2

R
;
v2

R

�
�
U2

R
� 10�9

�uw
R
;
vw

R

�
�
UW

R
� 10�12�

1

�0R cos�

@p

@�
;

1

�0R

@p

@�

�
�

�ph

L
� 10�3�

1

�o

@p

@z

�
�

�pv

H
� 10�

�

�0
g

�
� g � 10

(rh � (Arhu);rh � (Arhv) ) �
AU

L2
� 10�10 to 10�9�

@

@z

�
�
@u

@z

�
;
@

@z

�
�
@v

@z

��
�
�U

H2
� 10�11

(rh � (Arhw) ) �
AW

L2
� 10�13 to 10�12�

@

@z

�
�
@w

@z

��
�
�W

H2
� 10�14;

with all in units of m s�2. For modeling, most of the terms in the horizontal equations are

retained, with only those metric terms invlolving w being dropped. In the vertical equa-

tion, however, the pressure gradient and gravitational terms clearly dominate, by nearly

10 orders of magnitude, the other terms. This leads to what is termed the hydrostatic

approximation.

2.1.5 The Hydrostatic Approximation

In the vertical momentum equation (2.33), the estimates above clearly indicate the

dominance of two terms. Dropping all others leaves

@p

@z
= ��g; (2.34)

which is known as the hydrostatic equation. This equation gives the pressure �eld from

the density �eld. Remembering that the density is found by an equation of state of the
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form

� = �(T; S; p); (2.35)

it can be calculated based on the tracer �elds and then (2.34) can be integrated from

the surface (where constant atmospheric pressure is assumed) downward to calculate the

pressure �eld.

Now taking the continuity equation, (2.29),

r � u =
@w

@z
+
2w

R
+

1

R cos�

@(v cos�)

@�
+

1

R cos�

@u

@�
= 0; (2.36)

and using the scaling from above, all terms in this equation are found to be of order

10�7 m s�2, except for the second on the right-hand side, which is 4 orders of magnitude

smaller. Therefore it can be neglected, giving the approximate continuity equation

@w

@z
= �

1

R cos�

�
@(v cos�)

@�
+
@u

@�

�
; (2.37)

which can be used to calculate the vertical velocity from the horizontal velocities.

2.1.6 Final Form of Ocean Primitive Equations

Writing the results in complete detail yields

@u

@t
+ADV(u)�

uv tan�

R
� fv = �

1

�0R cos�

@p

@�
+ F� (2.38)

@v

@t
+ADV(v) +

u2 tan�

R
+ fu = �

1

�0R

@p

@�
+ F� (2.39)

@w

@z
= �

1

R cos�

�
@u

@�
+
@(v cos�)

@�

�
(2.40)

@T

@t
+ADV(T ) =

@

@z

�
�h
@T

@z

�
+rh � (AhrhT ) (2.41)

@S

@t
+ADV(S) =

@

@z

�
�h
@S

@z

�
+rh � (AhrhS) (2.42)

@p

@z
= ��g (2.43)

� = �(T; S; p); (2.44)
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where the advective and viscous terms are given by

ADV(a) = u
1

R cos�

@a

@�
+ v

1

R

@a

@�
+ w

@a

@z
(2.45)

F� = rh � (Amrhu) +
Am

R2

�
(1� tan2 �)u�

2v� sin�

cos2 �

�
+

@

@z

�
�m

@u

@z

�
(2.46)

F� = rh � (Amrhv) +
Am

R2

�
(1� tan2 �)v �

2u� sin�

cos2 �

�
+

@

@z

�
�m

@v

@z

�
; (2.47)

where Am and �m are the horizontal and vertical viscosity coeÆcients, and Ah and �h are

the horizontal and vertical di�usion coeÆcients, and where rh is the horizontal gradient

operator, written in the spherical coordinates as

rh � (arhb) =
1

R2 cos2 �

@

@�

�
a
@b

@�

�
+

1

R2 cos�

@

@�

�
a cos �

@b

@�

�
: (2.48)

2.1.7 Other Forms

Other forms of the original equations can be derived by making di�erent assumptions,

approximations, or scalings. Two common forms are the shallow-water equations and the

quasigeostrophic equations. The former are a set of two-dimensional equations very similar

to (2.77), (2.78), and (2.79) given below in the description of the free-surface solution.

That is, the shallow-water equations are similar to a two-dimensional subset of the full

primitive equations with a free-surface. The quasigeostrophic system describes a near

balance between the pressure gradient and Coriolis terms but is limited to less than global

applicability due to the failure of this balance near the equator. For the study of global

ocean general circulation, these other forms leave out important physical processes and

are of limited use. See Pedlosky [51; 52] for more on other geophysical 
uid equations and

their characteristics.
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2.2 Solving the Continuous Equations

This section will describe the general solution method for the primitive equations.

First the issue of boundary conditions will be discussed. Following this, two standard

approaches for solving the system of primitive equations are described. These will be

given without reference to the discretization of the equations. Only the explicit free-

surface method of solution will be used in the work described below. However, since the

rigid-lid method has seen widespread use in the �eld, that solution method is outlined as

well.

2.2.1 Boundary Conditions

The velocity boundary condition at the ocean bottom is that of no normal 
ow,

un = u � rH = 0; (2.49)

where H is the depth to the bottom. In the model coordinate system this gives

w(�H) = �
1

R cos�
u(�H)

@H

@�
�

1

R
v(�H)

@H

@�
: (2.50)

The bottom tracer boundary conditions are set to zero. The small amount of geothermal

heat 
ux can be ignored. At the surface, the 
uxes of heat and fresh water are speci�ed

either by another model, such as an ice model or atmospheric model, or from observations.

Likewise, the momentum boundary condition at the surface involves speci�cation of wind

stresses either from a coupled model or observations.

At the surface, the 
uid height can vary, with the height of the 
uid governed by

w =
@�

@t
+

u

R cos�

@�

@�
+
v

R

@�

@�
; (2.51)
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� being the surface elevation. Through this condition, surface waves are permitted which

have characteristic velocities of
p
gH , where H is the ocean 
uid depth. This yields typical

velocities of order 100 m s�2, which can be orders of magnitude greater than the maximum

velocities seen in the rest of the ocean. While the equations can be discretized and solved

directly with this condition, there are consequences on the allowable timestep for explicit

�nite di�erence models, which will be addressed later.

Another approach is to eliminate the surface waves by �xing the surface height to

be zero. This is known as the \rigid-lid" approximation, e�ectively increasing the surface

wave speed to in�nity. This approximation also has further e�ects on other long-wave

dynamics, but these are thought to have little overall e�ect on the solution. See [37] for

further details. Besides these e�ects, this method also requires one to calculate a two-

dimensional streamfunction, which involves the solution of a Poisson-like equation. This

will be described in the following section.

2.2.2 Solving the Rigid-Lid System { Elimination of Pressure

Though the free-surface formulation will be used exclusively in this work, the rigid-lid

formulation will be outlined for completeness, as it is used in a large number of similar

models. To solve the momentum equations, (2.38) and (2.39), the pressure, which is un-

known because of the e�ect of the rigid-lid, must be eliminated. Integrating the continuity

equation (2.37) with respect to z from the bottom to the surface gives

w(0) � w(�H) = �
1

R cos�

�
@

@�

�Z 0

�H

u dz

�
+

@

@�

�Z 0

�H

v cos�dz

��

+
1

R cos�
u(�H)

@H

@�
+

1

R
v(�H)

@H

@�
:

(2.52)
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Using w(0) = 0 and (2.50), this becomes

@

@�

�Z 0

�H

u dz

�
+

@

@�

�Z 0

�H

v cos�dz

�
= 0: (2.53)

Thus a streamfunction can be derived such that

@ 

@�
=

cos�

R

Z 0

�H

�0v dz =
H�0 cos�

R
�v (2.54)

@�

@�
= �

1

R

Z 0

�H

�0u dz = �
H�0

R
�u; (2.55)

where

�u =
1

H

Z 0

�H

u dz (2.56)

�v =
1

H

Z 0

�H

v dz: (2.57)

Integrating the momentum equations, (2.38) and (2.39), with respect to z gives

H
@�u

@t
= Hf�v �

1

�0R cos�

Z 0

�H

@p

@�
dz

+

Z 0

�H

�
�ADV (u) +

uv tan�

R
+ F�

�
dz

(2.58)

H
@�v

@t
= Hf �u�

1

�0R

Z 0

�H

@p

@�
dz

+

Z 0

�H

�
�ADV (v)�

u2 tan�

R
+ F�

�
dz:

(2.59)

Using the newly de�ned streamfunction and the hydrostatic relation

p(z) = ps + g

Z 0

z

� dz0; (2.60)

where ps is the surface pressure, then

�
1

R�0

@2 

@�@t
=

f

R�0 cos�

@ 

@�
�

H

R�0 cos�

@ps

@�

+

Z 0

�H

�
�ADV (u) +

uv tan�

R
+ F� �

g

R�0 cos�

Z 0

z

@�

@�
dz0
�
dz

(2.61)

1

R�0 cos�

@2 

@�@t
=

f

R�0

@ 

@�
�

H

R�0

@ps

@�

+

Z 0

�H

�
�ADV (v) �

u2 tan�

R
+ F� �

g

R�0

Z 0

z

@�

@�
dz0
�
dz:

(2.62)
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Multiplying these equations by R�0 cos�
H

and R�0
H

respectively, gives

�
cos�

H

@2 

@�@t
=

f

H

@ 

@�
�
@ps

@�
+ cos�FU (2.63)

1

H cos�

@2 

@�@t
=

f

H

@ 

@�
�
@ps

@�
+ FV; (2.64)

where

FU = �
R�0

H

Z 0

�H

�
ADV (u)�

uv tan�

R
� F� +

g

R�0 cos�

Z 0

z

@�

@�
dz0
�
dz (2.65)

FV = �
R�0

H

Z 0

�H

�
ADV (v) +

u2 tan�

R
� F� +

g

R�0

Z 0

z

@�

@�
dz0
�
dz: (2.66)

The surface pressure is then eliminated by cross-di�erentiating (2.63) and (2.64) and

subtracting the former from the latter, resulting in

@

@t

�
@

@�

�
1

H cos�

@ 

@�

�
+

@

@�

�
cos�

H

@ 

@�

��

=
@ 

@�

@

@�

�
f

H

�
�
@ 

@�

@

@�

�
f

H

�
+

@

@�
(FV )�

@

@�
(cos�FU): (2.67)

This equation is Poisson-like, involving diÆculties with boundary conditions and compli-

cated topography. See [36] for a description of an instability that can occur with rough

bottom topography. The boundary condition for the streamfunction requires integrals

around the ocean land masses as described in [11]. This boundary condition procedure is

non-local and negatively a�ects the scalability and eÆciency of the model on distributed

memory computer architectures.

The total velocity may be expressed as

(u; v) = (�u; �v) + (û; v̂); (2.68)

with the �u and �v components being predicted by (2.54), (2.55), and (2.67). To predict û

and v̂, the momentum equations, (2.38) and (2.39), are used with the hydrostatic relation



25

(2.60), where the surface pressure, ps, is temporarily set to zero to give

@u0

@t
+ADV (u)�

uv tan�

R
� fv = �

g

R�0 cos�

@

@�

�Z 0

z

� dz

�
+ F� (2.69)

@v0

@t
+ADV (v)�

u2 tan�

R
� fu = �

g

R�0

@

@�

�Z 0

z

� dz

�
+ F�: (2.70)

Now u0 and v0 di�er from u and v because of the absence of the part of the pressure

gradient due to surface pressure. However, the error due to not including the surface

pressure only in
uences the depth mean of u0 and v0. But û and v̂ have no depth mean,

so they can be obtained from u0 and v0 by subtracting out the depth mean, eliminating

the error from the lack of surface pressure. So to determine û and v̂ the depth means are

subtracted from the velocities calculated, i.e.

(û; v̂) = (u0 � �u0; v0 � �v0); (2.71)

where �u0 and �v0 are the depth mean values of u0 and v0. Thus the velocities have been split

into two parts: one part that is independent of depth, known as the barotropic velocity,

and another part that is the deviation from the depth mean, known as the baroclinic

velocity.

2.2.3 Solving the Free-Surface System { Explicit Method

As mentioned above, allowing surface gravity waves leads to the need for a much

shorter time-step. However, as described below, the barotropic component of the 
ow can

be split from the baroclinic. The former is advanced with a smaller timestep, while the

more slowly varying terms of the latter can be advanced with the larger timestep. This

subcycling strategy can be computationally competitive with the barotropic streamfunc-

tion, which generally requires many iterations of a relaxation or conjugate gradient solver.



26

And as mentioned above, on distributed memory parallel architectures the streamfunc-

tion solve involves non-local communication, which can lead to poor performance on large

numbers of processors, while the explicit free-surface method only requires local commu-

nication. Thus the free-surface approach is preferred for running on massively parallel

computers.

The following is a method detailed by Killworth [37]. The hydrostatic relation is

de�ned for the free-surface case as

p = ps +

Z 0

z

g� dz0; (2.72)

where ps is the pressure at z = 0,

ps = �0g�(�; �; t): (2.73)

The velocities are still split into barotropic and baroclinic modes,

(u; v) = (�u; �v) + (û; v̂); (2.74)

but now the barotropic velocities, (�u; �v), are de�ned as depth integrals of the velocities,

�u =

Z �

�H

u dz (2.75)

�v =

Z �

�H

v dz: (2.76)

As with the rigid lid solution, the continuity equation, (2.37), is integrated from the

bottom to the surface to give

�t +
1

R cos�

�
@�u

@�
+

@

@�
(cos��v)

�
= 0: (2.77)

Likewise, integrating the momentum equations and using the boundary conditions on w
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gives

�ut � f�v =�
gH

R cos�

@�

@�
+X (2.78)

�vt + f �u =�
gH

R

@�

@�
+ Y; (2.79)

where X and Y are given by

X = �
1

R cos�

@

@�

Z �

�H

u2 dz �
1

R

@

@�

Z �

�H

uv dz

�
1

R cos�

Z �

�H

dz

Z 0

z

g
@�

@�
dz0 +

Z �

�H

F�

(2.80)

and

Y = �
1

R cos�

@

@�

Z �

�H

uv dz �
1

R

@

@�

Z �

�H

v2 dz

�
1

R

Z �

�H

dz

Z 0

z

g
@�

@�
dz0 +

Z �

�H

F�:

(2.81)

The terms inX and Y comprise the density forcing, friction, and the nonlinear interactions.

All of the terms are assumed to vary slowly or be weak for ocean 
ows, so that they can

be used as forcing terms for the more rapidly evolving barotropic 
ow.

Thus, the baroclinic velocities are integrated forward in time with (2.69), (2.70), and

(2.71). Then, assuming that X and Y are constant, the barotropic equations, (2.77),

(2.78), and (2.79), are stepped forward with a smaller time step that satis�es stability

for the surface waves until they have reached the same time as the baroclinic equations.

Further details and consequences can be found in [37].

2.3 Discretizing the Equations

Using the methods detailed in [11], the equations of the explicit free-surface method

described above will now be discretized for solution in the model. First the arrangement

of variables on the grid and the speci�cation of topography are de�ned. Next the general
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(T; S)i+1;j+1(T; S)i;j+1

(u; v)i�1;j (u; v)i;j

(T; S)i;j (T; S)i+1;j

(u; v)i;j�1(u; v)i�1;j�1

Figure 2.1: The arrangement of variables in the horizontal

discretization operators and methods are described. Then the speci�c discretizations of

each part of the equations are detailed, with separate sections for the tracer transport,

baroclinic momentum, and baroclinic momentum equations. Another section describes

a numerical problem and its associated solution with a �lter. Temporal discretization

methods are outlined next, as various methods are used in the model.

2.3.1 Spatial Arrangement of Variables

The arrangement of the variables on the grid in the horizontal is shown in Figure 2.1.

This particular arrangement is known as a B-grid (see [2]). It is the most commonly used

grid structure in ocean models, but other alternatives have been investigated. Some of

the work mentioned in Section 1.2 has been done with unstaggered grids. Reasons for

choosing this placement of the model variables include reduction of the truncation error

and the relative accuracy of wave speed with the model equations compared with other

choices.

Because of this spatial separation of variables, quantities are said to be on the \tracer"
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or \velocity" grid. If a quantity qi;j;k is de�ned on the \tracer" grid, it is located at the

T-grid cell with indices (i; j; k). Likewise if qi;j;k is de�ned in the \velocity" grid, it is

located at the U-grid cell with indices (i; j; k), which is located northeast of the T-grid

cell with the same indices.

Other quantities of interest will be de�ned on the faces of the cells. The indexing

convention adopted here will be to label the north, east, and bottom faces of a cell with

the indices of the cell center. Thus a quantity, q, de�ned on the north face of the tracer

cell Ti;j;k is written as qi;j;k, and the same quantity on the southern face is written as

qi;j�1;k. This avoids the use of half indices when writing such expressions.

The vertical arrangement of variables is shown in Figure 2.2. The vertical coordinate

is depth, in contrast to some ocean models which use pressure coordinates in the vertical.

Level thicknesses are not constant but usually increase with depth. The purpose of the

nonconstant vertical resolution is to place more grid levels in the surface regions where

gradients are higher and there is more variability. See [69] for details on the implications

of the nonconstant, or \stretched", vertical resolution.

All model quantities except the vertical velocity are located at the points marked T

in Figure 2.2. Note that these points are not precisely cell centered but lie above the cell

center. Rather, the vertical velocity points, marked w in the �gure, lie centered between

the T points. The opposite method has been used in the past, but the method described

places quantities to be advected vertically, which are given by an average of the two

vertical levels, coincident with the advecting velocity. See [50] for more discussion of the

two options.
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Figure 2.2: The arrangement of variables in the vertical
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Figure 2.3: An example of bottom topography. The cells shown are tracer land cells. The

squares show the locations of vertical velocities at the bottoms of the tracer grid columns.

The open circle indicates the location of the vertical velocity at the bottom of the velocity

grid column. Cross marks indicate velocity grid land points.

2.3.2 Speci�cation of Topography

The topography of the model domain is given by the number of vertical levels at

each horizontal location on the tracer grid. Since the vertical coordinate is depth, this is

determined by the depth of the ocean bottom at each horizontal tracer grid location. This

information is speci�ed in a �le that is read into model arrays on initialization. Subse-

quently, the number of vertical levels at each location on the velocity grid is determined

by the minimum number of levels at the surrounding tracer grid locations.

Figure 2.3 illustrates the relationship between tracer and velocity land cells. The

velocities at the cross marks must be zero, as they are located on material surfaces. This

brings up an important point. When a tracer grid cell is said to be land, the whole cell

is land, and the cell boundaries are material surfaces. However, when a velocity grid cell

is said to be land, this means that there is a material surface at the location of the cell
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center. The whole cell will be land only in the case where all four neighboring tracer grid

cells are also land.

2.3.3 Discrete Spatial Operators

A number of common operations will be used in di�erencing the equations. The

operations of averaging and di�erencing are de�ned here. Averaging is given by

qi;j;k
� =

qi+1;j;k + qi;j;k

2
(2.82)

qi;j;k
� =

qi;j+1;k + qi;j;k

2
(2.83)

qi;j;k
z =

qi;j;k+1 + qi;j;k

2
: (2.84)

There are two forms of di�erences used, the �rst de�ned by

Æ� (qi;j;k) =
qi+1;j;k � qi;j;k

R��i
(2.85)

Æ� (qi;j;k) =
qi;j+1;k � qi;j;k

R��j
(2.86)

Æz (qi;j;k) =
qi;j;k � qi;j;k+1

�zk
; (2.87)

and the alternate di�erencing operations de�ned by

�� (qi;j;k) = qi+1;j;k � qi;j;k (2.88)

�� (qi;j;k) = qi;j+1;k � qi;j;k (2.89)

�z (qi;j;k) = qi;j;k � qi;j;k+1: (2.90)

When q is a tracer grid quantity, then R��i is given by dxui and R��j is given by dyuj .

Likewise, when q is a velocity grid quantity, then R��i is given by dxti and R��j is given

by dytj .

Note that, because of the stagger of the variables on the grid, it is important to
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z
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Figure 2.4: Location of some \
ux" quantities
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know where a quantity is de�ned and where the result of an operation on that quantity is

de�ned. A few examples are given by the following:

� The zonal average of a tracer grid quantity, qi;j;k, given by the expression qi;j;k
�, is

de�ned on the east face of the tracer cell.

� The meridional di�erence of a velocity grid quantity, qi;j;k, given by the expression

Æ� (qi;j;k), is de�ned on the north face of the velocity cell.

� Both the operations Æ�
�
qi;j;k

�
�
and Æ�

�
qi;j;k

�
�
, where q is a tracer grid quantity,

give quantities de�ned at the center of the velocity grid cell.

� Both the operations Æ�
�
qi;j;k

�
�
and Æ�

�
qi;j;k

�
�
, where q is a velocity grid quantity,

give quantities de�ned at the center of the tracer grid cell.

2.3.4 Flux Form

Because of the Boussinesq approximation of Section 2.1.3, we have r � u = 0, which

allows

r � (au) = ar � u+ u � ra (2.91)

to be reduced to

r � (au) = u � ra: (2.92)

So the advection operator given by (2.45) can be rewritten as

ADV (a) =
1

R cos�

@(ua)

@�
+

1

R

@(va)

@�
+
@(wa)

@z
: (2.93)

This \
ux form" of the operator highlights its conservation properties by casting it into

the divergence of a quantity and will be especially important later in calculating quantities
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at the interfaces between grids. In the following sections detailing the discrete form of

the equations, most terms will be cast into operations on \
ux quantities", so that the

transition to the description of the methods used at grid interfaces will be more natural.

2.3.5 Tracer Transport Equations

Using the de�nitions and forms given above, the discretization of the tracer equations,

(2.42) and (2.43) are given here. The methodology will be to break the equations down

into general terms which will be de�ned in more and more speci�c terms following. The

tracer equations can be written as

Æ� (ti;j;k;�) = ADV (ti;j;k;�) +DIFF (ti;j;k;��1); (2.94)

where t is any tracer, gives the discrete time rate of change as a sum of an advective and

a di�usive term. Here the di�usive term is lagged in time, i.e. the di�usive operator uses

the values at the previous timestep. This is generally the case, though not always. The

time discretization of this equation and the general methods of time discretization used

in the model are discussed in Section 2.3.9.

The advective term will be written in terms of the di�erence of 
uxes into and out of

the cell, as described above. First the advective velocities are de�ned. They are located

at the east, north, and bottom faces of tracer grid cells.

AdvVel Tei;j;k;� =
1

dytj
� dyuj�1 � ui;j�1;k;�

�
(2.95)

AdvVel Tni;j;k;� = cos�Uj � vi�1;j;k;�
� (2.96)

AdvVel Tbi;j;k;� = �
1

cos�Tj
�

kmaxX
k0=k+1

�
Æ�
�
AdvVel Tei�1;j;k0;�

�
+ Æ�

�
AdvVel Tni;j�1;k0;�

��
� dztk

(2.97)
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Using these velocities, the advective 
uxes of tracer quantities are de�ned. They are also

located on the east, north, and bottom faces of tracer grid cells.

AdvFlux Tei;j;k;� = AdvVel Tei;j;k;� � ti;j;k;�
�

(2.98)

AdvFlux Tni;j;k;� = AdvVel Tni;j;k;� � ti;j;k;�
�

(2.99)

AdvFlux Tbi;j;k;� = AdvVel Tbi;j;k;� � ti;j;k;�
z

(2.100)

Then for each tracer cell, the time tendency of the tracer quantity due to advection

is calculated with di�erences of these 
uxes, with the resulting quantity de�ned at the

centers of tracer grid cells.

ADV (ti;j;k;�) =
1

cos�Tj
[Æ� (AdvFlux Tei�1;j;k;�) + Æ� (AdvFlux Tni;j�1;k;�)]

+ Æz (AdvFlux Tbi;j;k�1;�)

(2.101)

For tracer di�usion, again the terms are written as the di�erence of 
uxes into and out

of the cell. The di�usive 
uxes of tracer quantities are de�ned on the east, north, and

bottom faces of the tracer grid cells.

Di�Flux Tei;j;k;� = AHj � Æ� (ti;j;k;�) (2.102)

Di�Flux Tni;j;k;� = AHj cos�
U
j � Æ� (ti;j;k;�) (2.103)

Di�Flux Tbi;j;k;� = �Hk � Æz (ti;j;k;�) (2.104)

Then, for each tracer cell, the time tendency of the tracer quantity due to di�usion is

calculated with di�erences of these 
uxes, with the resulting quantity de�ned at the centers

of the tracer grid cells.

DIFF (ti;j;k;�) =
1

cos2 �Tj
Æ� (Di�Flux Tei�1;j;k;�)

+
1

cos�Tj
Æ� (Di�Flux Tni;j�1;k;�)

+ Æz (Di�Flux Tbi;j;k�1;� )

(2.105)
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The use of the hydrostatic approximation, (2.34), requires the use of a vertical con-

vection scheme to ensure static stability. This is accomplished by an explicit convection

scheme which operates whenever there is a gravitational instability given by

Æz (�i;j;k) < 0: (2.106)

The convection scheme operates by an iterative process which mixes pairs of adjacent

levels which are unstable. The process is outlined is the following algorithm:

Algorithm 2.3.1. Convective Adjustment

for m = 1 to n

for s = 1 to 2

if s=1 then

Compute densities, rhoi;j;k, referenced to the same pressure level for each of the

level pairs 1&2, 3&4, etc.

else

Compute densities, rhoi;j;k, referenced to the same pressure level for each of the

level pairs 2&3, 4&5, etc.

end if

for k = s to kmax� 1

if �i;j;k > �i;j;k+1 then

Ti;j;k (
Ti;j;kdztk+Ti;j;k+1dztk+1

dztk+dztk+1

Ti;j;k+1 ( Ti;j;k
end if

end for

end for

end for

In this algorithm n is a parameter that is adjustable. Higher values mix the column

more thoroughly, while lower values reduce the computational expense. Since this scheme

is not guaranteed to remove all instabilities, using a value that is too low for n may leave

some gravitational instability in the solution.
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2.3.6 Baroclinic Momentum Equations

The baroclinic momentum equations, (2.69) and (2.70), can similarly be written in

the form

Æ� (ui;j;k;�) = ADV (ui;j;k;�) + COR(vi;j;k;� 0) +MET (ui;j;k;�)

+GRAD�(pi;j;k;� 00) +VISC (ui;j;k;��1)

(2.107)

Æ� (vi;j;k;�) = ADV (vi;j;k;�) + COR(ui;j;k;� 0) +MET (vi;j;k;�)

+GRAD�(pi;j;k;� 00) +VISC (vi;j;k;��1);

(2.108)

where u and v are the baroclinic velocities. The time discretization of these equations is

discussed in Section 2.3.9, along with the meanings of the time indices, � 0 and � 00. There

are many more terms involved in these equations, and the stagger of the grid places similar

quantities in di�erent locations on the grid. However, the general forms are the same.

Starting again with the advective terms, velocities are de�ned for the advection of

momentum. They are de�ned on the east, north, and bottom faces of velocity grid cells.

AdvVel Uei;j;k;� = ui;j;k;�
� (2.109)

AdvVel Uni;j;k;� = cos�Tj+1 � vi;j;k;�
� (2.110)

AdvVel Ubi;j;k;� = AdvVel Tbi;j;kbottom;�
��
�

1

cos�Uj

kmaxX
k0=k+1

�
Æ�
�
AdvVel Uei�1;j;k0;�

�
+ Æ�

�
AdvVel Uni;j�1;k0;�

��
� dzuk:

(2.111)

Using these velocities, advective 
uxes can be written, which are located on the east,
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north, and bottom faces of velocity grid cells:

AdvFlux Uei;j;k;� = AdvVel Uei;j;k;� � ui;j;k;�
� (2.112)

AdvFlux Uni;j;k;� = AdvVel Uni;j;k;� � ui;j;k;�
� (2.113)

AdvFlux Ubi;j;k;� = AdvVel Ubi;j;k;� � ui;j;k;�
z (2.114)

and

AdvFlux Vei;j;k;� = AdvVel Uei;j;k;� � vi;j;k;�
� (2.115)

AdvFlux Vni;j;k;� = AdvVel Uni;j;k;� � vi;j;k;�
� (2.116)

AdvFlux Vbi;j;k;� = AdvVel Ubi;j;k;� � vi;j;k;�
z: (2.117)

Then for each velocity cell, the time tendency of the velocities due to advection is calculated

with di�erences of these 
uxes, with the resulting quantity de�ned at the centers of the

velocity grid cells.

ADV (ui;j;k;�) =
1

cos�Uj
[Æ� (AdvFlux Uei�1;j;k;�) + Æ� (AdvFlux Uni;j�1;k;�)]

+ Æz (AdvFlux Ubi;j;k�1;�)

(2.118)

ADV (vi;j;k;�) =
1

cos�Uj
[Æ� (AdvFlux Vei�1;j;k;�) + Æ� (AdvFlux Vni;j�1;k;�)]

+ Æz (AdvFlux Vbi;j;k�1;�)

(2.119)

The di�usive 
uxes of momentum are also de�ned on the east, north, and bottom faces

of velocity grid cells.

Di�Flux Uei;j;k;� = AMj � Æ� (ui;j;k;�) (2.120)

Di�Flux Uni;j;k;� = AMj cos�
T
j+1 � Æ� (ui;j;k;�) (2.121)

Di�Flux Ubi;j;k;� = �Mk � Æz (ui;j;k;�) (2.122)
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and

Di�Flux Vei;j;k;� = AMj � Æ� (vi;j;k;�) (2.123)

Di�Flux Vni;j;k;� = AMj cos�
T
j+1 � Æ� (vi;j;k;�) (2.124)

Di�Flux Vbi;j;k;� = �Mk � Æz (vi;j;k;�) (2.125)

These di�er from the expressions given in [50] and others, in that variable grid spacing

in the longitudinal direction is not allowed. The viscous terms are much like the tracer

di�usion terms, except they contain extra metric terms (see equation (2.46)), and they

are de�ned at the centers of velocity grid cells.

VISC (ui;j;k;� ) =
1

cos2 �Uj
Æ� (Di�Flux Uei�1;j;k;�)

+
1

cos�Uj
Æ� (Di�Flux Uni;j�1;k;�)

+ Æz (Di�Flux Ubi;j;k�1;� ) +VMET (ui;j;k;�)

(2.126)

VISC (vi;j;k;� ) =
1

cos2 �Uj
Æ� (Di�Flux Vei�1;j;k;� )

+
1

cos�Uj
Æ� (Di�Flux Vni;j�1;k;�)

+ Æz (Di�Flux Vbi;j;k�1;� ) +VMET (vi;j;k;�)

(2.127)

where

VMET (ui;j;k;�) =
AMj(1� tan2 �Uj )

R2
ui;j;k;�

�
AMj sin�

U
j

Rdxuj cos2 �
U
j

(vi+1;j;k;� � vi�1;j;k;�)

(2.128)

VMET (vi;j;k;�) =
AMj(1� tan2 �Uj )

R2
vi;j;k;�

�
AMj sin�

U
j

Rdxuj cos2 �
U
j

(ui+1;j;k;� � ui�1;j;k;�)

(2.129)
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The coriolis terms, which are not present in the tracer transport equations, are of a

particularly simple form, as they are merely linear functions of the velocities, and they

are located at the centers of velocity cells.

COR(ui;j;k;�) = 2
 sin�Uj ui;j;k;� (2.130)

COR(vi;j;k;�) = 2
 sin�Uj vi;j;k;� ; (2.131)

where � 0 will be � for an explicit treatment of the term and a (possible) mixture of � � 1

and � + 1 for implicit treatment, as discussed in Section 2.3.9.

The metric terms, also located at the centers of velocity cells, are given by

MET (ui;j;k;� ) =
ui;j;k;�vi;j;k;� tan�

U
j

R
(2.132)

MET (vi;j;k;� ) =
u2i;j;k;� tan�

U
j

R
: (2.133)

The pressure gradient terms are calculated by derivatives of the pressure, which is

given by the hydrostatic relation of (2.34). Since pressure is calculated by integrating the

density from the surface downward, these terms are sums of the discretized derivatives of

the density. They are located at the centers of velocity grid cells. At the �rst depth level,

the pressure gradient is given by

GRAD�(pi;j;1;� ) =
�g dzw1

�0 cos�
U
j

Æ�

�
�i;j;1;� 0

�
�

(2.134)

GRAD�(pi;j;1;� ) =
�g dzw1

�0
Æ�

�
�i;j;1;� 0

�
�
: (2.135)

And then at the deeper levels, it is given by

GRAD�(pi;j;k;�) = GRAD�(pi;j;1;� ) +
�g

�0 cos�
U
j

kX
k0=2

Æ�

�
�i;j;k0�1;� 0

�;z
�
dzwk0 (2.136)

GRAD�(pi;j;k;�) = GRAD�(pi;j;1;� ) +
�g

�0

kX
k0=2

Æ�

�
�i;j;k0�1;� 0

�;z
�
dzwk0 ; (2.137)

where �� 0 may be either �� or the time averaged quantity 1
4
(���1 + 2�� + ��+1).
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2.3.7 Barotropic Momentum and Surface Height Equations

The barotropic momentum equations, (2.78) and (2.79), and the surface height equa-

tion, (2.77), can be written in discrete form as

Æ� (�ui;j;� ) = COR(�ui;j;� 0) +GRAD�(�i;j;� ) +Xi;j;� 00 (2.138)

Æ� (�vi;j;� ) = �COR(�vi;j;� 0) +GRAD�(�i;j;� ) + Yi;j;� 00 (2.139)

Æ� (�i;j;� ) = GRAD�(�ui;j;� ) +GRAD�(�vi;j;� ); (2.140)

with each of the forcing terms in the �rst two equations de�ned at the centers of velocity

grid cells, and the forcing terms of the third equation de�ned at the centers of tracer grid

cells. The time discretization of these equations is discussed in Section 2.3.9, along with

the meanings of the time indices, � 0 and � 00.

The terms X and Y contain the slowly varying forcing terms, which are assumed

constant during the integration of the barotropic equations.

Xi;j;� =

kmaxX
k=1

h
ADV (ui;j;k;�) +MET (ui;j;k;�) +GRAD�(pi;j;k;�) +VISC (ui;j;k;�)

i
dzuk

(2.141)

Yi;j;� =

kmaxX
k=1

h
ADV (vi;j;k;�) +MET (vi;j;k;�) +GRAD�(pi;j;k;�) +VISC (vi;j;k;�)

i
dzuk

(2.142)

The above terms are those de�ned for the baroclinic equations, (2.118), (2.132), (2.136),

and (2.126), respectively, for the X term, and (2.119), (2.133), (2.137), and (2.127), re-

spectively, for the Y term. They are calculated once during the baroclinic advance and

are summed and stored for use here in the barotropic advance.

The coriolis terms in the barotropic equations are nearly identical to those in the
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baroclinic equations, (2.130) and (2.131).

COR(�ui;j;� ) = 2
 sin�Uj � �vi;j;� (2.143)

COR(�vi;j;� ) = 2
 sin�Uj � �ui;j;� (2.144)

The remaining forcing terms in the barotropic velocity equations are spatial derivatives of

the surface height.

GRAD�(�i;j;� ) =
gHi;j

cos�Uj
� Æ� (EtaFlux ei�1;j;� ) (2.145)

GRAD�(�i;j;� ) = gHi;j � Æ� (EtaFlux ni;j�1;�) ; (2.146)

where the 
uxes are given by

EtaFlux ei;j;� = �i;j;�
� (2.147)

EtaFlux ni;j;� = �i;j;�
�; (2.148)

which are de�ned at the east and north faces of velocity grid cells.

The surface height equation has forcing terms very much like the second terms in the

barotropic velocity equations.

GRAD�(�ui;j;� ) =
1

cos�Tj
� Æ� (UFluxi�1;j;� ) (2.149)

GRAD�(�vi;j;� ) =
1

cos�Tj
� Æ� (VFluxi;j�1;� ) ; (2.150)

where the 
uxes are given by

UFluxi;j;� = �ui;j�1;�
�

(2.151)

VFluxi;j;� = cos�Uj � �vi�1;j;�
�
; (2.152)

which are de�ned at the east and north faces of tracer grid cells, respectively.
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2.3.8 Surface Height Filter

The discrete equation for the surface height given in Section 2.3.7 often computes a

solution with what looks like a \checkerboard" spatial pattern. This part of the solution is

not a feature of the physical equations. However, due to the nature of the discrete numerics

with the choice of mesh having variables de�ned at staggered locations, this pattern is

persistent in the solution to the discrete equations. That is, once this \checkerboard"

component exists in the discrete solution, the primary terms in the discrete equations

have no e�ect on it.

Another way of stating this is to say the \checkerboard" solution in the surface height

is in the \null space" of the discrete operators. That is, for a discrete operator, L(�), and

a purely \checkerboard" solution, �C , given by

�Ci;j = a (�1)i+j (2.153)

where a is a constant, �C is in the \null space" of the operator if

L
�
�C
�
= 0: (2.154)

Thus, once the solution has this component, the operator has no e�ect on it.

As a demonstration of this in the barotropic equations, Figure 2.5 shows the surface

height �eld given by (2.153). The surface height appears in the equation (2.138) and

(2.139), operated on by the gradient operators GRAD�(�)i;j and GRAD
�(�)i;j . But these

operators, de�ned by (2.145) and (2.146), calculate spatial di�erences of 
uxes in one

horizontal dimension given by spatial averages in the other horizontal dimension. Using
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Figure 2.5: An example of a \checkerboard" solution in the surface height.

the example surface height �eld,

EtaFlux ei;j =
a+ (�a)

2
= 0 (2.155)

EtaFlux ei+1;j =
�a+ a

2
= 0 (2.156)

EtaFlux ni;j =
a+ (�a)

2
= 0 (2.157)

EtaFlux ni;j+1 =
�a+ a

2
= 0; (2.158)

giving zero for the gradient operators, which will be taking di�erences of a constant. Since

the surface height is modi�ed using terms computed from the barotropic velocities, but

the barotropic velocities are not in
uenced by this \checkerboard" solution, the solution

is allowed to persist.

Since this solution is a numerical artifact, it should be removed before it grows in size

and generates roundo� errors which can a�ect the solution. As discussed in [18] and [37],

a �lter can be applied to the surface height to selectively damp this mode. First land
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masks are de�ned for both the tracer cells and the velocity cells.

maskTi;j =

8>>>><
>>>>:
0 if i; j is land

1 if i; j is water

(2.159)

maskUi;j = min
�
maskTi;j;mask

T
i+1;j;mask

T
i;j+1;mask

T
i+1;j+1

�
(2.160)

Then 
uxes can be de�ned at the east and north faces of the tracer grid cells,

DelPlusFlux e(�i;j) = cosTj mask
T
i;jmask

T
i+1;j ��� (�i;j) (2.161)

DelPlusFlux n(�i;j) = cosUj mask
T
i;jmask

T
i;j+1 ��� (�i;j) ; (2.162)

which allow the de�nition of an operator similar to a laplacian,

DelPlus(�i;j) = �� (DelPlusFlux e(�i�1;j)) + �� (DelPlusFlux n(�i;j�1)) : (2.163)

Then other 
uxes are de�ned at the northeast and northwest corners of the tracer grid

cells,

DelCrossFlux ne(�i;j) = cosUj mask
U
i;j � (�i+1;j+1 � �i;j) (2.164)

DelCrossFlux nw(�i;j) = cosUj mask
U
i�1;j � (�i�1;j+1 � �i;j) ; (2.165)

which allow the de�nition of another operator which is similar to the \DelPlus" operator

of (2.163), but which is oriented such that it is logically orthogonal to it,

DelCross(�i;j) =
1

2
[DelCrossFlux ne(�)i;j �DelCrossFlux ne(�)i�1;j�1 +

DelCrossFlux nw(�)i;j �DelCrossFlux nw(�)i+1;j�1 ] :

(2.166)

Using these 
uxes, an operator can be de�ned by

CheckerFilt(�i;j) = �i;j +
�

cos�Tj dytj
[DelPlus(�)i;j �DelCross(�)i;j ] ; (2.167)
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where � is a coe�cient determining the strength of the �lter. When applied to the surface

height, (2.167) selectively �lters out the \checkerboard" solution.

To see the e�ects of this �ltering operator, apply it to the previous example solution

shown in Figure 2.5. Assuming all values of the masks are one, and using cartesian

coordinates, so that cos�j is constant in j, for simplicity. Then

DelPlus(�i;j) = [(�a)� a]� [a� (�a)] + [(�a)� a]� [a� (�a)] = �8a (2.168)

DelCross(�i;j) =
1

2
[(a� a)� (a� a) + (a� a)� (a� a)] = 0; (2.169)

so that

CheckerFilt(�i;j) = a+
�

dytj
(�8a� 0): (2.170)

In the absence of variation in the meridional spacing, the use of � = dyt=8 will result in

those cells with the value a becoming zero, and those with value �a becoming zero as

well (by simply reversing all signs in the calculation), thus eliminating the checkerboard

solution entirely.

E�ectively, this �lter is approximating the curvature of the solution twice, along two

directions as nearly orthogonal as possible, then modifying the solution proportional to the

di�erence of the two estimates. Thus for solutions with fairly smooth local curvature, that

is, curvature which is nearly the same when calculated along the two di�erent directions,

the �lter has very little e�ect. For example, when there is locally constant curvature in

only one direction, this �lter has zero e�ect. Yet any \checkerboard" component to the

solution can be eliminated almost entirely. See [18] for more details of the numerical

properties and a discussion of more general �lters. Refer to the sections of this work

describing the model runs for detail of where and how this �lter is used.
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2.3.9 Temporal Discretization

In the previous sections, discrete operators have been written which form the right-

hand side of equations with the general form,

Æ� (qi;j;k;�) = L(qi;j;k;�): (2.171)

Now the discretization of the left-hand side must be de�ned. In the current model, the

discrete time operator, Æ� , may be a function of both the current timestep, � , the previous

timestep, � � 1, and the next timestep, � + 1, depending on the time-stepping procedure

used. The particular procedures used in this work will be outlined here.

Leapfrog

The main method of time advance in the present model is that of centered di�erences

in time, or \leapfrog" time stepping as it is sometimes called. Using a centered di�erence

in time on the left-hand side of (2.171) gives

qi;j;k;�+1 � qi;j;k;��1

2 dt
= L(qi;j;k;�); (2.172)

where dt is the time step. Solving for the the level � + 1,

qi;j;k;�+1 = qi;j;k;��1 + 2 dtL(qi;j;k;�): (2.173)

Thus the solution at the next time step, � + 1, is obtained by modifying the solution

at the previous time step, � � 1, based on discrete operations performed on the solution

at the current time step, � . One advantage of this method is accuracy of second-order

(see Section A.2) with only one evaluation of the right-hand side of (2.171) per time

step. Disadvantanges include the need to provide space for the model variables at three

time levels and the potential for the solution to decouple into separate solutions in time
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(see [31]). Because of the latter problem, the following method is used at intervals in

conjuction with leapfrog time stepping.

Euler Backward

This method is a two-step process consisting of a prediction step combined with a

correction step. The prediction step is a forward in time di�erencing of (2.171) from the

current time level, giving a prediction of the value of qi;j;k;�+1 of

qi;j;k;� 0 � qi;j;k;�

dt
= L(qi;j;k;�); (2.174)

giving

qi;j;k;� 0 = qi;j;k;� + dtLqi;j;k;� : (2.175)

Then this estimate is used in a backward di�erencing to achieve a corrected value,

qi;j;k;�+1 � qi;j;k;�

dt
= L(qi;j;k;� 0); (2.176)

giving

qi;j;k;�+1 = qi;j;k;� + dtL(qi;j;k;� 0): (2.177)

This two step method requires two computations of the right-hand side of (2.171) as well

as the same storage requirements as the leapfrog method. It is �rst-order accurate, but

the steady-state solution contains no numerical dissipation (again see Section A.2), unlike

the �rst-order forward Euler di�erencing. Unlike the leapfrog method, the Euler backward

time stepping does not su�er from the temporal splitting of the solution but damps this

computational mode.
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General Time Stepping Process

The above two time stepping methods are used together in the model to provide

eÆciency without the problems that the leapfrog method alone could exhibit. The leapfrog

method is used, while an Euler backward time step is made periodically to damp the

computational mode that can arise in the leapfrog scheme. Past experience of modelers

has shown that a frequency of one mixing step per 17 leapfrog steps gives good results.

Also, for the �rst time step of the model, when the initial solution is only known at one

time level, an Euler backward time step is used to initiate the integration.

Implicit Coriolis Terms

The coriolis terms in the equations may be treated either explicitly, implicitly, or as

a mixture. That is, when calculating the coriolis terms, either the value of the variables

at the current or previous timesteps, the value at the next timestep (which is what is

sought), or a mixture of the two can be used. To show how this is done in general, take a

simpli�ed set of equations which have coriolis terms,

U �+1 = U � + k
�
L (U � ) + f

�
(1� �)V � + �V �+1

�	
(2.178)

V �+1 = V � + k
�
L (V � )� f

�
(1� �)U � + �U �+1

�	
; (2.179)

where L is a �nite di�erence operator, k is the timestep, f is the coriolis parameter, � is

the fraction of the coriolis term to compute implicitly, and forward in time di�erencing has

been assumed for simplicity. Take (2.179) and substitute it into (2.178) for V �+1, giving

U �+1 = U � + k [L (U � ) + (1� �)fV � ] + �fkV �

+ �fk2L (V � )� �(1 � �)f2k2U � � �2f2k2U �+1

(2.180)
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or

U �+1 =

�
1� �(1 � �)f2k2

�
U � + kL (U � ) + fk [V � + �kL (V � )]

1 + �2f2k2
: (2.181)

Likewise, by substituting (2.178) into (2.179) for U �+1,

V �+1 =

�
1� �(1 � �)f2k2

�
V � + kL (V � )� fk [U � + �kL (U � )]

1 + �2f2k2
: (2.182)

2.4 Parallel Implementation

The parallelization of the LLNL ocean model is based on two-dimensional domain

decomposition. All points in the vertical column at a given latitude and longitude are cal-

culated by the same processor. This choice re
ects the very di�erent nature of the vertical

dimension when compared to the horizontal dimensions. Processes such as convection

and calculations of quantities such as pressure take place over all of the points in the

vertical column. No such analogous processes or calculations occur over all of the points

of the horizontal dimensions, except for the �ltering of variables at high latitudes, which

because of this property presents diÆculties for e�ective parallelization. A decomposition

in which all grid cells in the vertical are handled by the same processor is therefore desir-

able to minimize interprocessor communication. Also, since the barotropic components of

the model equations are two-dimensional, a two-dimensional decomposition simpli�es the

barotropic/baroclinic split as well.

When splitting up the domain over a given number of processors, the subdomains

are assigned in a regular cartesian manner, without considering which columns contain all

land cells and which have water cells. An example processor layout is shown in Figure 2.6.

This type of decomposition yields a simple, logical arrangement in which each subdomain

has either one or no neighbors on each of its north, south, east, and west borders, and
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c(y)

j2

j1

1 i1 i2 c(x)

Figure 2.6: An example of regular two-dimensional domain decomposition for nine

subdomains.

those neighbors have the same domain widths and heights, in the cases of north/south

and east/west neighbors, respectively. Each subdomain contains a one-cell border around

all sides, referred to as \ghost" zones, in addition to the cells assigned to it by the decom-

position. These ghost cells correspond to the nearest cells of each neighboring subdomain

and are used for computation convenience and eÆciency.

Unlike the Figure 2.6, the choice of how to divide the domain|that is, how to choose

the indices in and jn|is made such that each subdomain has as close to the average

number of cells as possible.
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Algorithm 2.4.1. Regular one-dimensional domain decomposition

Given:

s fa number of subdomains over which to divide the domaing
c fthe number of cells in the domaing

Calculate:

davg ( c� s finteger divisiong
r ( c mod s fremainderg
if r 6= 0 then fdomain does not divide evenlyg
do dn ( cavg + 1 for n = 1 to r

end if

do dn ( cavg for n = r + 1 to s

Then each subdomain, n, will contain the points given by the indices

i = i0 +

n�1X
n0=1

dn0 for i
0 = 1; : : : ; dn ;

where the valid range of indices is 1 to c, and any \ghost" cells which may be needed for

the numerical method employed have not been included.

Since the decomposition is logically regular cartesian, the two-dimensional decompo-

sition can be reduced to two independent one-dimensional decompositions using the above

procedure.

Only after the subdomain bounds are calculated are the locations of land cells taken

into account. Those subdomains with no ocean cells are dropped, reducing the total num-

ber from that requested before the decomposition. The decomposition is not recalculated

when subdomains are dropped for this reason. Thus it is possible that when a decompo-

sition into m by n subdomains is requested, the resulting number of subdomains will be

less than m� n.

Note that using the above algorithm to decompose a domain with c(x) by c(y) cells into

s(x) by s(y) subdomains, it is possible for one subdomain to have as much as
�
c(x) � s(x)

�
+

�
c(y) � s(y)

�
+ 1 more cells than another. This is unavoidable with this method and will

lead to some level of load imbalance in the model.
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Chapter 3

The Reduced Grid

In the preceding chapter, the details of the solution of the primitive equations on

the standard latitude-longitude grid have been given. In this chapter, the modi�cations

necessary for the implementation of the reduced grid will be explained. First some basic

properties of the reduced grid are de�ned. Then the strategy for implementing this method

into the LLNL ocean model is explained. Next some commonly used operations which

act between the various resolution levels are introduced before moving to the algorithmic

modi�cations to the discrete solution method. Finally the changes required for and lim-

itations imposed by the method on parallel distributed memory computer architectures

are given.

3.1 Basic Properties

This section will cover some basic properties of the reduced grid. First the e�ects of

the staggered arrangement of variables on the ratio of resolution reduction between grid

regions is presented. Then de�nitions and properties of global reduced grids are given for



55

Figure 3.1: Tracer (solid) and velocity (dashed) boxes for an interface with a re�nement

ratio of two. Solid circles are tracer points and open circles are velocity points.

two speci�c cases. The e�ects of the staggered arrangement of variables on the locations of

the interfaces are then shown, and two types of reduced grid interface are de�ned. Finally

some details of indexing the reduced grid cells in longitude with a staggered mesh are

presented.

3.1.1 Choosing the Re�nement Ratio

In choosing the ratio of the number of grid cells on adjacent regions of di�ering

resolution, a distinction between odd and even re�nement ratios should be noted. In

Figure 3.1, an interface is shown with a re�nement ratio of two. On the tracer grid, cell

boundaries on the coarser side of the interface align with cell boundaries on the �ner side

of the interface. However, for velocity grid cells, cell boundaries do not align, leaving �ne

cells adjacent to more than one coarse cell. Fluxes calculated across the interface from

the �ne cell would be divided into more than one coarse cell, adding complications. Also,

the lack of consistency between the velocity and tracer interfaces this would impart is
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Figure 3.2: Tracer (solid) and velocity (dashed) boxes for an interface with a re�nement

ratio of three. Solid circles are tracer points and open circles are velocity points.

undesirable.

On the other hand, Figure 3.2 shows the relationship with a re�nement ratio of

three. For both the tracer and velocity cells, boundaries on the coarse side of the interface

align with boundaries on the �ne side. This simpli�es the calculation of 
uxes across the

interfaces and allows a consistent set of operations for both the tracer and velocity grid

variables. This argues for the use of only odd-integer re�nement ratios. Also, since the

goal of reducing the resolution toward the poles is to keep the grid cell size as constant

as possible, lower ratios will achieve this better. Thus a re�nement ratio of three will be

used exclusively in this work.

3.1.2 Grid De�nition

The ocean model uses a grid for which the tracer grid quantities have cell boundaries

located at the equator, while the velocity grid quantities have cell centers at the equator.

In the south, the presence of Antarctica means the grid can be terminated at 80 degrees
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south, requiring no special concern with the pole. In the north, the singularity is removed

by placing land cells at the highest row. While a velocity point would have been placed

at the pole, this makes both the highest and second highest latitude velocity points zero.

The highest latitude tracer cell is land, with a cell boundary at the pole.

The LLNL ocean code has the capability to use a grid in which the longitudinal grid

spacing varies as a function of longitude, giving a \stretched" grid. Since this is rarely

used for global grids, for simplicity in developing the reduced grid code, this capability is

eliminated. Also, there is the capability to use a grid in which the latitudinal grid spacing

varies as a function of latitude. While this option is not used in the model runs presented

here, this capability has been retained with the addition of the reduced grid.

The optimal locations for the changes in resolution must be determined with the goal

of keeping grid cells as uniform in size as possible. With a three-to-one ratio of longitudinal

resolution between adjacent grid regions, the cell size will nearly triple when moving across

an interface toward the poles. Choose a reference grid spacing, �xref , no smaller than

two-thirds the size of the equatorial grid spacing, �xeq. All grid cells will remain within

�fty percent of the size of �xref if the grid is coarsened at each latitude at which the cells

would be smaller than half the reference size without coarsening. Two such choices of

�xref are presented here: �xeq and (2=3)�xeq.

For the following grid de�nitions, the latitudinal spacing is chosen to be 2.5 degrees,

as this will be the spacing for the global model runs which will be presented later.

The choice of reference grid spacing of (2=3)�xeq results in a grid with properties

shown in Figure 3.3. Tracer grid interfaces are located at 70 and 82.5 degrees. This

grid moves the changes in resolution as far poleward as possible while still keeping cells

as uniform in size as possible. The number of grid cells is reduced from 36 � Nlon per
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Figure 3.3: Reduced grid properties for �xref = (2=3)�xeq

hemisphere to (28+5=3+3=9)�Nlon, where Nlon is the number of cells in the longitudinal

direction at the equator. This is a 162
3
percent reduction in the number of cells.

The choice of reference grid spacing of �eq results in a grid with properties shown in

Figure 3.4. Tracer grid interfaces are located at 60 and 80 degrees. This grid keeps the

smallest grid cell as large as possible while also still keeping cells as uniform in size as

possible. The number of grid cells is reduced even more, to (24 + 8=3 + 4=9) � Nlon per

hemisphere. This is a reduction in cells of nearly 24.7 percent.

The latter grid will be used for the global runs in this work for several reasons. First,

the larger size of the smallest grid cells should allow for the largest increase in timestep.

Secondly, the number of cells is reduced the most, which should give the largest reduction

in execution time per step, as well as present the greatest challenge for load balancing

the parallel runs. Lastly, the interfaces are located at lower latitudes, so their in
uence
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Figure 3.4: Reduced grid properties for �xref = �xeq

should be more strongly felt throughout the model solution. This is bene�cial because the

goal here is to investigate what these e�ects are | not necessarily to reduce them to the

smallest levels possible.

3.1.3 Interface Location and the Staggered Grid

The staggered placement of the variables on the grid in the horizontal was described

in Section 2.3.1. In the above de�nition of the reduced grid, the location of the tracer grid

interfaces was speci�ed, but because of the staggered arrangement, that alone does not

specify the location of the velocity grid interfaces.

Actually, there are two options for the relative locations of the tracer and velocity

grid interfaces. Figure 3.5 shows the option in which the velocity grid interface is located

toward the coarser grid relative to the tracer interface. In this situation, each tracer grid
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Tracer Interface

Velocity Interface

Figure 3.5: A \type-1" interface showing the relative locations of the tracer grid (solid

circles and lines) as well as the velocity grid (open circles and dashed lines).

Velocity Interface

Tracer Interface

Figure 3.6: Same as Figure 3.5 except for a type-2 interface.
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cell on the �ner side of an interface has a velocity grid point at each corner. In the other

option, shown in Figure 3.6, the velocity grid interface is located toward the �ner grid

relative to the tracer grid interface. Here it is the velocity grid cell on the �ner side of the

interface which has a tracer grid at each corner.

Another way to de�ne the two cases is to state which grid | coarse or �ne | the

velocity points lie on at the tracer grid interface. In the �rst example, the velocity points

at the tracer grid interface are �ne grid points. In the other, they are coarse grid points.

Here the two types will be referred to as \type-1" and \type-2" interfaces, respectively.

The choice of interface type has a bearing on the details of the �nite di�erence calcu-

lations at the interfaces. For example, with a type-1 interface, tracer advection requires

interpolation of the tracer quantity only. However, with a type-2 interface, tracer advec-

tion requires interpolation of both the tracer quantity and the velocities at the interface.

Another di�erence is that the quantities involved in gradient terms along the interfaces

| pressure and surface height | are tracer grid quantities. Thus, a type-1 interface will

interpolate a quantity and subsequently take a derivative in the direction of the gradient.

Note that this is never needed with a type-2 interface. This could be a potential source

of numerical noise in the calculation, and more will be discussed later on this subject.

Both types of interfaces will be implemented.

3.1.4 Longitudinal Indexing and the Staggered Grid

Since there will be interaction between grids of di�ering resolution across the inter-

faces, it will be important to identify the relationships between cells on each side of the

interfaces. Here the staggered relationship of the model variables also has an e�ect, leading

to di�erent treatments for tracer and velocity grid variables.
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Figure 3.7: Grid overview
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Figure 3.8: Tracer grid (sub)domain

For reference, an overview diagram of a domain (or subdomain) containing one type-

1 interface is shown in Figure 3.7. Note the in
uence of the relative grid staggering at

the domain boundaries and at the interface in particular. On each subgrid, the relative

locations of the boundary grid cells and the domain border (shown as a heavy line in

the �gure) are as they would be on a regular grid of that resolution. However, at the

interface, the stagger of the tracer and velocity grids leads to a di�erent relationship

across the interface for the tracer grid than the velocity grid.

Figure 3.8 shows the same type of grid as Figure 3.7 but only the tracer grid part of it.

Within the subdomain, for each coarse cell at the interface there are three corresponding

�ne cells across the interface. Outside the subdomain, there is one \ghost" cell, shown

shaded in the �gure, on all sides.

Looking at Figure 3.9, which shows the velocity grid part, it is immediately apparent

that the velocity grid has di�erent characteristics. On the western and southern edges
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Figure 3.9: Velocity grid (sub)domain

of the subdomain, the \ghost" cells lie on the subdomain boundary. On the eastern and

northern edges, they lie outside the subdomain boundary, with the next most westerly

(southerly) cell lying on the boundary. This yields a di�erent relationship across the

interface at the domain boundaries for the velocity grid than the tracer grid. At the

westernmost coarse cell, there are two corresponding cells across the interface, one being

a \ghost" cell. At the easternmost coarse cell, there are no cells across the interface. The

easternmost �ne \ghost" cell corresponds to the second most eastern coarse cell.

This di�erence between the tracer and velocity grids at the interface must be kept

in mind as the reduced grid algorithms are presented later. A�ected procedures include

the �lling, copying, averaging, and interpolation of Section 3.3 and the communication

necessary for parallel implementation.
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3.2 Implementation Strategy

Since the reduced grid will be used in the framework of an existing, well-developed

model (see intro to Chapter 2), the implications of any signi�cant code changes must

be carefully considered. If the changes made are large enough to require alterations of

the basic design strategies of the original model, the resulting product will no longer be

merely a modi�cation, but a whole new model. This is not desired for two main reasons.

First, comparisons of the original and reduced grid models should ideally re
ect only the

change in numerical grid, not changes in code layout, data restructuring, or parallelization

strategy. While such changes may been improvements in some respects, they would only

obscure the true goal of this project. Second, the less obtrusive the required changes can

be made in this particular implementation, the more likely the results may be of interest

to others with similar models.

Thus the general design strategy should preserve the overall layout of the model.

When practical, there should be no modi�cation to the outer loops or control structures,

as well as to the overall layout of the data structures. Bene�ts to this approach include

easier incorporation of parallel processing techniques already built into the code and the

preservation of the method of coupling the OGCM to other climate models.

This section will describe in some generality the main methods used to achieve this

desired result. First, the minimum modi�cations required to the data structures in order

to keep the algorithms intact are described. Then those modi�cations which reduce the

computation to only those grid cells necessary for our reduced grid are outlined. Finally,

it may be of interest to outline a di�erent implementation strategy for comparison, and

one such method will be described at the end of the section.



66

A

B

Figure 3.10: An interface with no dummy row

3.2.1 Dummy Interface Rows

In pursuing the preservation of the model data structures, balance must be struck

with the goal of minimizing the changes required to the model algorithms. Therefore, the

one such modi�cation made is the addition of extra storage at the location of each interface

in model arrays with latitude as a dimension. For example, a two-dimensional array over

latitude and longitude would gain three new rows for the grid described in Section 3.1.2.

Section 3.4 will show how this modi�cation will allow minimum modi�cation to the model

algorithms.

The standard numerics for the MOM type models require data from each cell's nearest

neighbors and no further. However, if a data cell is located adjacent to a grid interface, its

neighbor in the direction of the interface may not be addressable by a simple increment

or decrement of an index, and there may be more than one neighboring cell across the

interface. Because of this, the standard �nite-di�erence numerics or algorithm would have

to be modi�ed at grid interfaces. Consider the simple case illustrated in Figure 3.10. Here

both cell A and cell B need to use a 
ux calculated on their shared face. However, due

to the di�erence in resolution, the 
uxes for the two cells will be related, but di�erent

in general. If this were also the layout of the data in memory, there would only be one
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A

B

Figure 3.11: An Interface with a dummy row

location in which to store two di�erent pieces of data. Thus the standard algorithm for

computing the rate of change of a cell's value would have to be modi�ed to treat special

cases.

However, by the insertion of an extra row between the two grids into the data struc-

tures at the interface, as illustrated in Figure 3.11, both cells have their own data for the


ux, and the algorithms for each cell will not need to be changed. Of course, the cells in

the added row are a purely algorthmic device and do not correspond to physical locations

in the domain. Therefore, most cell computations are able to skip these interface rows.

Now in order to carry out the standard computations for cells bordering an interface,

various interpolations and averages and the like will be done at the interface and in the

interface dummy row. Therefore, a way of indexing, or referring to the latitude index of,

an interface row is required. Unfortunately, this task is complicated by both the relative

staggering of the tracer grid and the velocity grid, as well as the possible orientation of the

interface in either of two directions. By the latter, I mean that we may have an interface

where a coarser grid is either to the north of a �ner grid or to the south. I will refer to
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these orientations as \north" and \south", respectively.

De�ning the index of an interface dummy row on the tracer grid by the index j,

Figure 3.12 shows the relative indexing of the velocity grid for both north and south

facing interfaces of type-1 (see Section 3.1.3 for de�nitions of interface type.) Thus, on

the tracer grid, for a north facing interface, the coarse grid is at an index one greater than

the interface row, while the �ne grid is at and index one less. The reverse is true for south

facing interfaces. The same relationship holds for the tracer grid at a type-2 interface,

shown in Figure 3.13.

On the velocity grid, however, the staggering of the grids changes this relative in-

dexing. With the tracer grid interface index still de�ned as j, the index of the interface

dummy row on the velocity grid is given by j for a north facing type-1 interface, but j� 1

for a south facing type-1 interface. The coarse and �ne sides are again one higher or lower

than that, depending on the orientation. For a type-2 interface, the velocity grid interface

dummy row is given by j�1 for a north facing interface, but j for a south facing interface.

3.2.2 Loop Modi�cation

The data structures remaining after the addition of interface rows as shown above does

not eliminate the extra memory locations which are no longer used due to the coarsening

of the grid. However, if calculations were still performed on these extra grid cells, some

of the bene�t of the reduced grid method would be lost. Figure 3.14 shows an example of

what a two-dimensional array might look like in a reduced grid scenario as implemented

here. The shaded cells are not used by the code, so a simple method needs to be devised

to avoid performing calculations in these cells. Simplicity is needed to remain faithful to

the idea of altering the code as little as possible.
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Figure 3.12: Type-1 north and south facing interface latitudinal indexing. Dark circles

are tracer grid points and open circles are velocity grid points.
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Figure 3.13: Type-2 north and south facing interface latitudinal indexing. Dark circles

are tracer grid points and open circles are velocity grid points.
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4 12 36

Figure 3.14: An example two-dimensional, reduced grid array

The following FORTRAN pseudocode illustrates the standard convention for looping

over a data structure followed by the method chosen here to perform the same loop over

a reduced grid in a way that bypasses the unused elements.

do j = jmin, jmax

do i = imin, imax

array(i,j) = x * y ! Some calculation

enddo

enddo

do j = jmin, jmax

do i = imin_new(j), imax_new(j)

array(i,j) = x * y ! Some calculation

enddo

enddo

The vectors imin_new and imax_new are de�ned in such a way that interface rows are

skipped and unused array elements are skipped in regions of coarsened resolution. This

is accomplished by setting imax_new to a value less than imin_new for values of j corre-

sponding to interface dummy rows. Also, the value of imax_new will vary from imax in

regions of standard resolution, to smaller and smaller values as the grid is coarsened.

Both the stagger of the grids, discussed in Section 3.2.1, and the two di�erent types of

interfaces, discussed in Section 3.1.3, add complications which will require four separate

versions of the imin_new and imax_new vectors. One set, herein named imin_t and
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imax_t, will skip tracer grid interface rows and extra tracer cells. Another, named imin_u

and imax_u, will skip velocity grid interface rows.

The third and fourth sets are used only for the type-1 and type-2 interfaces, respec-

tively. For a type-1 interface, imin_s and imax_s will skip the coarse tracer row adjacent

to an interface, but for the tracer interface dummy row will be de�ned the same as the

�ne row adjacent to the interface. For a type-2 interface, imin_r and imax_r will skip

the coarse velocity row adjacent to an interface, but for the velocity interface dummy row

will be de�ned the same as the �ne row adjacent to the interface. The use of these index

arrays will be described in Section 3.4.

Some de�nitions will ease the use of these arrays and loops when describing operations

at a grid interface. The tracer interface dummy row will be referred to as the \tracer

interface row". The coarse tracer grid row adjacent to an interface will be referred to as

the \coarse tracer row" or \coarse row" if the context makes it clear to which grid it is

referring. The �ne tracer grid row adjacent to an interface will be referred to as the \�ne

tracer row" or \�ne row". The same type of terminology will be used for the velocity grid.

A loop over latitude and longitude as above using the imin_t and imax_t indices

will be called a \loop over tracer indices" or a \T-loop" for short. A similar loop using

imin_u and imax_u will be called a \loop over velocity indices" or \U-loop." Likewise,

with imin_s and imax_s or imin_r and imax_r it will be called a \loop over special

indices" or \S-loop." The rows thus skipped are referred to as the tracer interface rows,

velocity interface rows, and special interface rows, respectively. The �rst two types of

skipped rows correspond to the added dummy rows of Section 3.2.1, while the third type

is one of the rows adjacent to an interface dummy row.
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3.2.3 An Alternate Strategy

The above description of implementation strategy has been guided by the desire

to keep the overall model structure and logic intact. However, it is useful to consider

situations in which this is unimportant in comparison to other needs or in which the

model uses a completely di�erent code structure. In either of these situations, the following

strategy may be of interest.

A grid of the type shown in Figure 1.1 may be thought of as one grid which is

coarsened toward the poles, as has been done throughout this work. However, it may

equivalently be considered multiple grids which are coupled together at their boundaries.

Whereas the LLNL ocean model is designed and written to operate on one grid covering the

whole model domain, the same algorithms could be rewritten to operate on an arbitrary

number of grid sections with boundary conditions speci�ed for each. This is obviously a

more 
exible design, as the case of one global grid with periodic boundaries is simply one

con�guration it could handle.

The reduced grid could be implemented in this model design by specifying the grid

sections corresponding to each latitudinal band of constant resolution. The operations

necessary to couple the di�ering resolutions would then be used to calculate the boundary

conditions at the northern and southern boundaries of the individual grids. Each individ-

ual grid would contain (at least) one row of \ghost" or \dummy" cells at the boundaries,

which would obviate the need for adding interface rows.

This strategy is not without its diÆculties. For example, parallelization of this type

of model is less straitforward. Since the code would iterate over each model grid, global

decomposition must give way to decomposition of subgrids. Each grid could then be



74

domain decomposed and thus parallelized, but if some grids are very small this could

reduce the overall parallel eÆciency. Other parallel methods could be applied to overcome

these diÆculties, but they would necessarily add complications. As another example,

the reduced grid algorithms require 
uxes to match across interfaces. This requires a

particular sequence of calculation, with added calculations at the interface occuring in the

middle of a timestep. These steps would further constrain the iteration of such a model

over subgrids.

This example is given not to show the superiority of the implementation strategy

chosen, but merely to give an alternate implementation with which to compare. All of

the diÆculties are undoubtedly surmountable, and likely have been dealt with in other

models. Here it is noted that rewriting a model in this manner would be a sizeable project,

with many details to work out in order to be successful. This consideration combined with

the desired model features given at the beginning of the section are enough to leave this

type of implementation for future work.

3.3 Interface Operations

Certain operations on data near grid interfaces will recur often enough in the numer-

ical algorithms to devote a section to describing them in generality. In the code imple-

mentation, these operations are written in a very 
exible manner, and their descriptions

here will re
ect that 
exibility. The details of how and where these operations are used

will be given in the section following which describes the actual algorithmic changes.

Another method of referring to the locations at which quantities are de�ned will be

used at times. For example, a 
ux which is de�ned on the north face of a tracer cell can
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Figure 3.15: Point-to-point �ll

actually be better described as being a tracer grid quantity longitudinally and a velocity

grid quantity latitudinally because it is aligned with the tracer points in longitude and

the velocity points in latitude. There are many other such quantities like this, and the

distinction is particularly important when discussing the following interface operations.

Therefore, a de�nition of terms is in order. A quantity is either T� or U� depending on

whether it is aligned with the tracer or velocity grid points in longitude. Each quantity

is also either T� or U� depending on whether it is aligned with the tracer or velocity grid

points in latitude.

As discussed in Section 3.1.4, there is a di�erence in how tracer and velocity grid

longitudinal indices align with their neighbors across interfaces. Therefore each of the

operations below will have one version for T� quantities and one for U� quantities. Taking

the example operation of averaging, the former version can be referred to as an \average

over tracer indices" or a \T-type average" for short. The latter version can be referred to

as an \average over velocity indices" or \U-type average."

3.3.1 Point-to-Point Fill

This is a coarse-to-�ne operation between grids near an interface, illustrated schemat-

ically in Figure 3.15. The value of each coarse grid cell is copied into all of the �ne cells to
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Figure 3.16: Point-to-point copy

which it corresponds. For this operation on the tracer grid, the coarse ghost cells at the

eastern and western boundaries correspond to the �ne ghost cells. For the velocity grid,

the coarse ghost cell at the western boundary corresponds to the two westernmost cells

of the �ne grid. See Section 3.1.4 for details. If the ghost cells of the coarse grid are set

properly before the �ll, no communication is necessary between subdomains.

This operation is analogous to a zeroth-order interpolation. It is used in this capacity

and for various initialization and input/output operations.

3.3.2 Point-to-Point Copy

This is a �ne-to-coarse operation between grids near an iterface, illustrated schemat-

ically in Figure 3.16, used prior to the calculation of certain zonal 
uxes for which the

shared points at the interface are required in both the �ne and coarse grid calculations.

Those �ne resolution points which correspond exactly in longitude to coarse resolution

points are copied to the corresponding coarse cells. Those �ne resolution points which

don't correspond in longitude to coarse resolution points are unused in this operation. For

the tracer grid, the eastern and western coarse ghost cells are not de�ned in this operation,

as they do not have directly corresponding �ne cells. On the velocity grid, the eastern

ghost cell likewise does not have a corresponding �ne cell and is therefore unde�ned for
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Figure 3.17: Averaging

this operation. However, the western velocity ghost cell does correspond directly to the

�ne ghost cell. Again, see Section 3.1.4 for more details. If the coarse ghost cell values

are required after this operation, communication between subdomains will be required for

the eastern and western tracer ghost cells and the eastern tracer ghost cell.

3.3.3 Average

This is a �ne-to-coarse operation, illustrated schematically in Figure 3.17. The value

of each �ne grid cell is averaged together with all other (three total) �ne cells that corre-

spond to the same coarse grid cell. The resulting average is copied to the corresponding

coarse cell. Depending on the quantity being averaged, this operation may in fact be a

summation. All of the ghost cell values are unde�ned for this operation. Thus, if they are

needed after the average operation, communication between subdomains will be required.

In the presence of topography one or two of the quantities being averaged may be zero

while the others are nonzero. This would occur when the �ner row adjacent to an interface

has both land and ocean cells, while the coarser row is an ocean cell. For example, if in

Figure 3.17, points B, e, and f were ocean points, while point d was a land point. When

these quantities are 
uxes, the zero values should just be averaged along with the others,

as the resulting 
ux will be for the entire length of the �ne-coarse shared boundary. That
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Figure 3.18: Interpolation

is, conservation of 
uxes at the interface requires

Fc � hc =

3X
n=1

Fn � hf ; (3.1)

where Fc is the coarse cell interface 
ux, Fn is the nth �ne cell interface 
ux, and hc and

hf are the coarse and �ne cell interface edge lengths, respectively. Since longitudinal mesh

spacing is not allowed to vary as a function of longitude,

hc = 3hf ; (3.2)

giving

Fc =
1

3

3X
n=1

Fn; (3.3)

which is the simple averaging operation. So conservation requires the inclusion of zero


uxes due to land cells in the averaging operation.

This operation is used for all 
uxes which cross the interfaces. For example, the tracer

advective 
uxes from the �ne grid row adjacent to an interface are averaged and used as

the 
ux to the coarse grid row adjacent to the interface.

3.3.4 Interpolation

This is a coarse-to-�ne operation, illustrated schematically in Figure 3.18. It is the

most complex of the operations in this section, as there are a number of options. The
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values of the �ne grid are determined from the coarse grid by polynomial interpolation,

cubic spline interpolation, or a point-to-point �ll as noted above. Numerical details of

interpolation techniques may be found in Section A.4 and [55]. Polynomial interpolations

from linear to cubic are implemented using the nearest cell values available. For example,

cubic polynomial interpolation will always use two cells to the left and two to the right of

the point at which the value is needed. Linear interpolation will always use the nearest

cell to the left and the right.

The boundary conditions for interpolation at land cells are no-
ow for the velocity

and no-
ux for tracers. That is, for purposes of interpolation, velocity values at land cells

are set to zero, while tracer values at land cells are set to the value of the cell immediately

adjacent to the land cell. So, if point A in Figure 3.18 corresponds to a velocity grid

land point, it will be used in an interpolation with a value of zero. However, if point A

corresponds to a tracer grid land point, it will be used in an interpolation with the value

of point B, assuming point B is not also a land point.

Topography has further in
uence on the interpolation in that it can require the order

of the interpolation to be reduced when quadratic or cubic polynomial interpolation is

used. For example, when interpolating to a point d in Figure 3.18, where points A and B

are land and ocean points, respectively, cubic interpolation will be reduced to quadratic

interpolation. If point C is also a land point, then the interpolation is further reduced to

linear.

Because of the di�erence in the de�nition of a tracer land cell and a velocity land

cell discussed in Section 2.3.2, there is yet another di�erence between tracer and velocity

grid interpolation near topography. Referring to Figure 3.19, point A is a tracer land cell.

Therefore interpolation point B, located within the tracer cell de�ned by A, is also a land
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Figure 3.19: Interpolation near topography

cell. Point D is a velocity grid point that is a land point. However, even though point E

is with the velocity cell de�ned by D, it is not located on a material boundary and is not

itself a land point. Interpolation must be used to determine a value at E.

A further complication of the presence of topography is its e�ect on cubic spline

interpolation. Polynomial interpolation can be calculated as a weighted average of the

interpolation points, with the weights calculated once at initialization. Cubic spline inter-

polation, however, requires a linear solve which is dependent on all the values along the

line of interpolation. Since complicated topography may break latitude lines into many

pieces, this will in general require many independent interpolations. This process is made

more diÆcult by the need to calculate these independent interpolations between land cells

on latitude lines within the framework of domain decomposition.

Subdomain communication requirements are dependent upon the type of interpola-

tion. The point-to-point �ll and linear types of interpolation require communication only

to set the initial coarse ghost cell values. Quadratic and cubic polynomial interpolation

require an extra ghost cell to be communicated on each end of the subdomain. Cubic

spline interpolation is non-local, requiring a solve across the entire latitude row even when

no topography is present. This involves much greater communication expense than the
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polynomial interpolations. Combined with the diÆculties in dealing with topography, cu-

bic spline interpolation is used only in the simpler test cases of Chapter 4. Further work

in using cubic splines as the basis of interpolation could follow the example of eÆcient

�ltering techniques for parallel processors in [46].

3.3.5 Reduction

This operation is a �ne-to-coarse operations analogous to the point-to-point copy.

However, a reduction does not just a�ect one coarse and one �ne row near an interface.

Instead it a�ects every row, changing each row from the standard grid | that is, not a

reduced grid | resolution to its reduced grid resolution. Thus, taking a �eld de�ned on a

standard grid and applying a reduction operation yields a �eld de�ned on a reduced grid.

However, like a point-to-point copy and unlike an average, only the standard resolution

points corresponding directly to coarsened resolution points are involved in the reduction.

This operation is used in initialization and for input/output routines.

3.3.6 Expansion

This operation is a coarse-to-�ne operation analogous to the point-to-point �ll. How-

ever, like the reduction, it does not just a�ect one coarse and one �ne row near an interface,

but it a�ects every row, changing each row from the reduced grid resolution to the stan-

dard grid resolution. In some sense, it is the opposite of a reduction operation, though a

reduction is not truly reversible. That is, a reduction takes some multiple of three points

and converts them to just one point, possibly losing some information in the process. The

expansion takes one point and converts it to some multiple of three points. This operation

is used for input/output routines.
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3.4 Modi�cations to the Discrete Equations

The changes necessary for the solution on the discretized equations of Section 2.3 on

a reduced grid are presented in this section. Most of the changes are really changes in the

procedure of the solution, rather than changes to the fundamental numerics. Because of

this, most of the quantities de�ned in Section 2.3 can be directly used in this section. While

the descriptions may seem to indicate large code modi�cations, the underlying operations

taking place and modi�cation to the code loops are rather simple. The complexity arises

mostly from the grid stagger and the two possible types of grid interface (see Section 3.1.3).

Therefore, summary comparisons of the standard and reduced grid procedures will be given

for the more complex parts. In this section, the changes to the initialization and surface

boundary conditions will be presented �rst. Then, each piece of the discretized primitive

equations will be dealt with separately, as was done in Section 2.3.

3.4.1 Initialization

Topography

Section 2.3.2 described the de�nition of topography on the standard grid. The mod-

i�cations required for the reduced grid involve both the respeci�cation of the topography

data �le and the reading of this data into the data arrays in the model. It is actually not

required that the topography data �le be modi�ed at all. However, for direct compari-

son between the standard and the reduced grid, the topography used in the global runs

described later is modi�ed. The details can be found in the section describing the run

parameters, Section 5.1.

With a reduced grid, a standard grid topography data �le is read at model initial-
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Figure 3.20: Procedure for setting velocity grid topography at a type-1 interface. Labeled

arrows indicate interface rows. (1) Fill the tracer grid interface values (dark squares) from

the coarse row topography data (dark circles). (2) Calculate velocity topography (open

circles) as minimum of neighboring tracer topography, skipping velocity interface row.

(3) U-type point-to-point �ll (open squares) from the coarse velocity row to the interface

row.

ization and then converted to the reduced grid resolution. First, dummy interface rows

are added to the topography data, as described in Section 3.2.1. Then a T-type reduction

operation is applied to the data, as described in Section 3.3. This gives an array with

interface rows added and the correct resolution data, but the data in the interface rows is

not yet set correctly.

The topography of an interface row is de�ned to be the same as the topography

of the adjacent coarse row, but at the resolution of the adjacent �ne row. This can

be accomplished for the tracer grid by the point-to-point �ll operation of Section 3.3,

operating between the coarse row and the interface row.

For the velocity grid topography, which was de�ned to be the minimum of the four

adjacent tracer grid depths, the procedure is slightly more complicated and is dependent

on the type of the interface, as de�ned in Section 3.1.3. For the type-1 inteface, a U-

loop is used, calculating the minimum of the four adjacent tracer grid depths as on the

standard grid. Then a U-type point-to-point �ll is used to set the velocity interface row

from the coarse row. This is shown schematically in Figure 3.20. For the type-2 interface,
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Figure 3.21: Procedure for setting velocity grid topography at a type-2 interface. Labeled

arrows indicate interface rows. (1) Fill the tracer grid interface values (dark squares) from

the coarse row topography data (dark circles). (2) Calculate velocity topography (open

circles) as minimum of neighboring tracer topography, skipping coarse row. (3) U-type

point-to-point copy (open squares) from the velocity interface row to coarse row.

an S-loop is used, calculating the minimum of the tracer grid depths as before. Then a

U-type point-to-point copy is used to set the coarse velocity rows from the interface rows.

This is shown schematically in Figure 3.21.

Surface Boundary Conditions

Data needed to calculate surface boundary conditions, consisting of surface wind

stress, temperature, and salinity, can be read from data �les. When this is the case, the

data is treated much like the topography data. First, dummy interface rows are added to

the data arrays. Then a reduction operation is applied, resulting in an array with added

dummy rows and the correct resolution of the data. For the boundary condition arrays,

the dummy interface values are never used, so they are left unde�ned.

3.4.2 Tracer

The discretized tracer transport equation, given by (2.94), consists of an advective

and a di�usive term. The general procedure for advancing this equation on the standard

grid compared to the procedure on a reduced grid as follows (column-only operations



85

omitted):

Standard Grid

� Calculate horizontal advective

velocities.

� Calculate vertical advective

velocity.

� Calculate advective and

di�usive 
uxes.

� Calculate divergences of

advective and di�usive 
uxes.

Reduced grid

� Interpolate tracers and

velocities (if necessary) at

interfaces.

� Calculate horizontal advective

velocities.

� Average meridional advective

velocity at interfaces.

� Calculate vertical advective

velocity.

� Calculate advective and

di�usive 
uxes.

� Average meridional advective

and di�usive 
uxes at

interfaces.

� Calculate divergences of

advective and di�usive 
uxes.

By this comparison it can be seen that the required modi�cations to the calculation

procedure consist mainly of extra steps inserted between standard calculations and mod-

i�cations to loops as described in Section 3.2.2. With this overview in mind, the details

are given below.

Advective Velocities

Following Section 2.3.5, the advective velocities of (2.95) through (2.97) are �rst

calculated. The advective velocity on the eastern face of the cell, AdvVel Te, is a T�

quantity (see Section 3.3) and is calculated with a T-loop, which skips the tracer interface

row. This quantity is not needed for the interface row, so it is left unde�ned there.

AdvVel Tn is a T� /U� quantity and is treated di�erently for type-1 and type-2 inter-

faces. With a type-1 interface, it is �rst computed with a U-loop. Then a T-type average
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Figure 3.22: Procedure for calculating tracer advective velocities at a type-1 interface.

Labeled arrows indicate interface rows. (1) Calculate AdvVel Tn (cross-marks) as normal,

skipping velocity interface row. (2) T-type average (boxed cross-mark) from the �ne

velocity row to the interface row.
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Figure 3.23: Procedure for calculating tracer advective velocities at a type-2 interface.

Labeled arrows indicate interface rows. (1) U-type interpolation of meridional velocities

from the coarse velocity row to the interface row. (2) Calculate AdvVel Tn (cross-marks)

as normal, skipping coarse velocity row. (3) T-type average (boxed cross-mark) from the

velocity interface row to the coarse row.
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is calculated from the �ne velocity row to the interface row. This is shown schematically

in Figure 3.22. With a type-2 interface, �rst an U-type interpolation is performed on the

meridional velocities from the coarse velocity row to the interface row. Then AdvVel Tn

is computed with an S-loop. Finally a T-type average is calculated from the velocity

interface row to the coarse row. This is shown schematically in Figure 3.23.

AdvVel Tb is calculated from AdvVel Te and AdvVel Tn. The operations given above

have provided these in the required locations. Thus, the vertical advective velocity is

calculated in a T-loop. Its value is not necessary yet at the interface row and is left

unde�ned there.

Advective Fluxes

Once the advective velocities are calculated, the advective 
uxes given by (2.98)

through (2.100) can be calculated. The advected quantities must be found by averaging

neighboring tracer grid quantities. For AdvFlux Te, the average ti;j;k;�
�
is required, and

for AdvFlux Tb, the average ti;j;k;�
z
is required. Both are calculated as on the standard

grid with a T-loop. The values are not required at the tracer interface row, so they are

left unde�ned there. Then, both AdvFlux Te and AdvFlux Tb are calculated, also with

a T-loop. These are also not required at the tracer interface row and are left unde�ned

there.

For AdvFlux Tn, the average ti;j;k;�
�
is required. Like AdvVel Tn, this quantity is

also a T� /U� quantity and is treated slightly di�erent for type-1 and type-2 interfaces.

For both interface types, the tracer quantity is �rst interpolated from the coarse tracer

row to the interface row. Then the standard cell averages are calculated in a U-loop for a

type-1 interface or an S-loop for a type-2 interface. Then AdvFlux Tn is calculated using
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Figure 3.24: Procedure for calculating tracer advective 
uxes at a type-1 interface. Labeled

arrows indicate interface rows. (1) T-type interpolation of tracer grid quantity from the

coarse tracer row to the interface row. (2) Calculate ti;j;k;�
�
and thus AdvFlux Tn (cross-

marks), skipping velocity interface row. (3) T-type average (boxed cross-mark) from the

�ne velocity row to the interface row.
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Figure 3.25: Procedure for calculating tracer advective 
uxes at a type-2 interface. Labeled

arrows indicate interface rows. (1) T-type interpolation of tracer grid quantity from the

coarse tracer row to the interface row. (2) Calculate ti;j;k;�
�
and thus AdvFlux Tn (cross-

marks), skipping coarse velocity row. (3) T-type average (boxed cross-mark) from the �ne

velocity row to the interface row.
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Figure 3.26: Procedure for calculating tracer di�usive 
uxes at a type-1 interface. Labeled

arrows indicate interface rows. (1) T-type interpolation of tracer grid quantity from the

coarse tracer row to the interface row. (2) Calculate Æ� (ti;j;k;�) and thus Di�Flux Tn

(cross-marks), skipping velocity interface row. (3) T-type average (boxed cross-mark)

from the �ne velocity row to the interface row.

these values along with the advective velocities, also in a U-loop and S-loop for type-1 and

type-2 interfaces, respectively. Then a T-type average is performed on the 
uxes from the

�ne velocity row to the interface row for a type-1 interface, and from the velocity interface

row to the coarse row for a type-2 interface. These operations are shown schematically in

Figure 3.24 and Figure 3.25.

Then, since the tracer advective 
uxes are known at every necessary location, the

time tendency of the tracer quantity due to advection, ADV (ti;j;k;�), given by (2.101), is

calculated with a T-loop. This quantity is not needed for the interface row and is left

unde�ned there.

Di�usive Fluxes

For the di�usive term, the 
uxes given by (2.102) through (2.104) must be calculated.

For Di�Flux Te, the average Æ� (ti;j;k;�) is required, and for Di�Flux Tb, the average

Æz (ti;j;k;�) is required. Both are calculated in a T-loop, with the unneeded interface values

left unde�ned.

For Di�Flux Tn, the di�erence ti;j;k;�
�
is required. Like AdvFlux Tn, this quantity
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Figure 3.27: Procedure for calculating tracer di�usive 
uxes at a type-2 interface. Labeled

arrows indicate interface rows. (1) T-type interpolation of tracer grid quantity from the

coarse tracer row to the interface row. (2) Calculate Æ� (ti;j;k;�) and thus Di�Flux Tn

(cross-marks), skipping coarse velocity row. (3) T-type average (boxed cross-mark) from

the �ne velocity row to the interface row.

is also a T� /U� quantity and is treated slightly di�erent for type-1 and type-2 interfaces.

For both interface types, the tracer quantity is �rst interpolated from the coarse tracer

row to the interface row. Note that this interpolation actually needs to be done only once

for all of the tracer equation terms. Then the 
uxes are calculated in a U-loop for a type-1

interface or an S-loop for a type-2 interface. Finally, a T-type average is performed on

the 
uxes from the �ne velocity row to the interface row for a type-1 interface, and from

the velocity interface row to the coarse row for a type-2 interface. These operations are

shown schematically in Figure 3.26 and Figure 3.27.

Now that tracer di�usive 
uxes are known at every necessary location, the time ten-

dency of the tracer quantity due to di�usion DIFF (ti;j;k;�), given by (2.105), is calculated

with a T-loop. This quantity is not needed for the interface row and is left unde�ned

there.

3.4.3 Baroclinic Momentum

The discretized momentum equations, given by (2.107) and (2.108), consist of ad-

vective, viscous, coriolis, metric, and pressure gradient terms. The general procedure for
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advancing this equation on the standard grid compared to the procedure on a reduced

grid as follows (column-only operations omitted):

Standard Grid

� Calculate horizontal advective

velocities.

� Calculate vertical advective

velocity.

� Calculate advective and

di�usive 
uxes.

� Calculate divergences of

advective and di�usive 
uxes.

� Calculate coriolis and metric

terms.

� Calculate pressure gradient

\
uxes."

� Calculate di�erences of pressure

gradient \
uxes."

Reduced grid

� Interpolate momentum

quantities at interfaces.

� Calculate horizontal advective

velocities.

� Average meridional advective

velocity at interfaces.

� Interpolate or point-to-point

copy tracer grid vertical

velocity to interfaces.

� Calculate vertical advective

velocity.

� Calculate advective and

di�usive 
uxes.

� Average meridional advective

and di�usive 
uxes at

interfaces.

� Calculate divergences of

advective and di�usive 
uxes.

� Calculate coriolis and metric

terms.

� Interpolate or point-to-point

copy density to interfaces.

� Calculate pressure gradient

\
uxes."

� Average meridional pressure

gradient \
uxes" at interfaces.

� Calculate di�erences of pressure

gradient \
uxes."

Again it can be seen that the required modi�cations to the calculation procedure consist

mainly of extra steps inserted between standard calculations and modi�cations to loops
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Figure 3.28: Procedure for calculating velocity grid advective velocities at a type-1 in-

terface. Labeled arrows indicate interface rows. (1) U-type interpolation of meridional

velocities from the coarse velocity row to the interface row. (2) Calculate AdvVel Un

(cross-marks) as normal, skipping coarse tracer row. (3) U-type average (boxed cross-

mark) from the tracer interface row to the coarse row.

(3)(2)(1)

U

T

Figure 3.29: Procedure for calculating velocity grid advective velocities at a type-2 in-

terface. Labeled arrows indicate interface rows. (1) U-type interpolation of meridional

velocities from the coarse velocity row to the interface row. (2) Calculate AdvVel Un

(cross-marks) as normal, skipping tracer interface row. (3) U-type average (boxed cross-

mark) from the �ne tracer row to the interface row.

as described in Section 3.2.2. With this overview in mind, the details are given below.

Advective Velocities

Following Section 2.3.6, the advective velocities of (2.109) through (2.111) are �rst

calculated. The advective velocity on the eastern face of the cell, AdvVel Ue, is a U�

quantity (see Section 3.3) and is calculated with a U-loop, which skips the velocity interface

row. This quantity is not needed for the interface row, so it is left unde�ned there.

AdvVel Un is a T� /U� quantity and is treated slightly di�erent for type-1 and type-
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T

Figure 3.30: Procedure for calculating velocity grid bottom advective velocities at a type-1

interface. Labeled arrows indicate interface rows. (1) T-type interpolation of tracer grid

vertical velocities from the coarse tracer row to the interface row. (2) Calculate averages

of neighoring tracer vertical velocities, skipping velocity interface row.

(2)(1)

U

T

Figure 3.31: Procedure for calculating velocity grid bottom advective velocities at a type-2

interface. Labeled arrows indicate interface rows. (1) T-type point-to-point copy of tracer

grid vertical velocities from the �ne tracer row to the interface row. (2) Calculate averages

of neighoring tracer vertical velocities, skipping velocity interface row.

2 interfaces. For both types, the meridional velocity is �rst interpolated with from the

coarse velocity row to the interface row. With a type-1 interface, velocities are calculated

in an S-loop, while a T-loop is used with a type-2 interface. Then a U-type average is

performed from the tracer interface row to the coarse row for a type-1 interface and from

the �ne tracer row to the interface row for a type-2 interface. These operations are shown

schematically in Figure 3.28 and Figure 3.29.

AdvVel Ub is calculated from AdvVel Ue, AdvVel Un, and AdvVel Tb, by (2.111).

The operations already given have provided the horizontal advective velocities in the

required locations. For the vertical advective velocity at the bottom, an average over
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the surrounding tracer vertical advective velocities is computed. With a type-1 interface,

the tracer vertical advective velocities are �rst interpolated from the coarse tracer row

to the interface. With a type-2 interface, they are point-to-point copied from the �ne

tracer row to the interface row. Then averages are calculated on each velocity point

of the neighboring tracer vertical velocities using a U-loop. The value at the velocity

interface is not necessary and is left unde�ned. These operations are shown schematically

in Figure 3.30 and Figure 3.31.

Advective Fluxes

Having obtained the velocity grid advective velocities, the advective 
uxes given by

(2.112) through (2.117) can be calculated. The zonal and vertical 
uxes, AdvFlux Ue,

AdvFlux Ve, AdvFlux Ub, and AdvFlux Vb, are computed with a U-loop, which skips

the velocity interface row. The are not needed at the interface row, so they are left

unde�ned there.

For AdvFlux Un and AdvFlux Vn, the averages ui;j;k;�
� and vi;j;k;�

� are required.

Like AdvVel Un and AdvVel Vn, they are T� /U� quantities and are treated slightly

di�erent for type-1 and type-2 interfaces. The procedure follows AdvVel Un directly. See

the description of its calculation and Figure 3.28 and Figure 3.29 for details.

Then, since the advective momentum 
uxes are known at the necessary locations,

the time tendency of the momentum quantities due to advection, ADV (ui;j;k;� ) and

ADV (vi;j;k;� ), given by (2.118) and (2.119), are calculated in a U-loop. These quanti-

ties are not needed for the interface row and are left unde�ned there.
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Di�usive Fluxes and Di�usive Metric Terms

For the viscous terms, the 
uxes given by (2.120) through (2.125) must be calculated.

For Di�Flux Ue and Di�Flux Ve, the di�erences Æ� (ui;j;k;�) and Æ� (vi;j;k;�) are required.

For Di�Flux Ub and Di�Flux Vb, the di�erences Æz (ti;j;k;�) and Æz (ti;j;k;�) are required.

All four are calculated in a U-loop, with the unneeded interface values left unde�ned.

For Di�Flux Un and Di�Flux Vn, the di�erences Æ� (ui;j;k;�) and Æ� (vi;j;k;�) are re-

quired. Like AdvVel Un, AdvVel Vn, AdvFlux Un, and AdvFlux Vn, they are T� /U�

quantities and are treated slightly di�erent for type-1 and type-2 interfaces. The procedure

follows that of AdvVel Un directly. See the description of its calculation and Figure 3.28

and Figure 3.29 for details.

The viscous metric terms, given by (2.128) and (2.129), are calculated with a U-loop,

skipping the interface rows where their values are unneeded.

Then, since the di�usive momentum 
uxes and their metric terms are known at

every necessary location, the time tendency of the momentum quantities due to viscosity,

VISC (ui;j;k;�) and VISC (vi;j;k;�), given by (2.126) and (2.127), are calculated with a U-

loop. These quantities are not needed for the interface row and are left unde�ned there.

Coriolis and Metric Terms

The coriolis terms, given by (2.130) and (2.131), being particular simple, are calcu-

lated in a U-loop, skipping the interface rows where their values are unneeded. The metric

terms, given by (2.132) and (2.133), are handled in this manner as well.
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Figure 3.32: Procedure for calculating longitudinal pressure gradient at a type-1 interface.

Labeled arrows indicate interface rows. (1) T-type interpolation of densities from the

coarse tracer row to the interface row. (2) Calculate latitudinal (and depth) averages,

skipping velocity interface row. (3) Calculate pressure gradient, skipping velocity interface

row.

Pressure Gradients

The pressure gradient terms, given by (2.134) and (2.135) at the surface and (2.136)

and (2.137) at deeper levels, are velocity grid quantities that can be cast into a conservative


ux form. They consist of gradients in one direction of averages taken over the orthogonal

direction(s). Thus, a conservative form will treat the averages as 
ux quantities which

must be the same for each cell sharing the boundary on which the 
ux is located. This

is analogous to the derivatives of 
uxes which comprise the advective and di�usive terms

already presented. Latitudinal gradients will require an average of the 
ux quantities for

conservation.

The calculation of the pressure gradients with type-1 interfaces begins with a T-

type interpolation of densities, which are tracer grid quantities, from the coarse tracer

row to the interface row. Latitudinal averages are computed in a U-loop and include

depth averaging for all but the top layer. Longitudinal averages are computed in an S-

loop, again with depth averaging for all but the top layer, then averaged with a U-type

average from the tracer interface row to the coarse row. Finally, both the latitudinal and

longitudinal pressure gradients are calculated in a U-loop, with the unneeded interface row
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Figure 3.33: Procedure for calculating latitudinal pressure gradient at a type-1 interface.

Labeled arrows indicate interface rows. (1) T-type interpolation of densities from the

coarse tracer row to the interface row. (2) Calculate longitudinal (and depth) averages,

skipping coarse tracer row. U-type average of resulting 
uxes from tracer interface row to

coarse row. (3) Calculate pressure gradient, skipping velocity interface row.

(3)(2)(1)

U

T

Figure 3.34: Procedure for calculating longitudinal pressure gradient at a type-2 interface.

Labeled arrows indicate interface rows. (1) T-type point-to-point copy of densities from

the �ne tracer row to the interface row. (2) Calculate averages, skipping velocity interface

row. (3) Calculate pressure gradient, skipping velocity interface row.

left unde�ned. These operations are shown schematically in Figure 3.32 and Figure 3.33.

The calculation of the pressure gradients with type-2 interfaces begins with a T-type

point-to-point copy of densities from the �ne tracer row to the interface row. Latitudinal

averages are computed in a U-loop and include depth averaging for all but the top layer.

Longitudinal averages are computed in an S-loop, again with depth averaging for all but

the top layer, then averaged with a U-type average from the �ne tracer row to the interface

row. Finally, both the latitudinal and longitudinal pressure gradients are calculated in a

U-loop, with the unneeded interface row left unde�ned. These operations are shown

schematically in Figure 3.34 and Figure 3.35.



98

(3)(2)(1)

U

T

Figure 3.35: Procedure for calculating latitudinal pressure gradient at a type-2 interface.

Labeled arrows indicate interface rows. (1) T-type point-to-point copy of densities from

the �ne tracer row to the interface row. (2) Calculate averages, skipping tracer interface

row. U-type average of resulting 
uxes from �ne tracer row to interface row. (3) Calculate

pressure gradient, skipping velocity interface row.

3.4.4 Barotropic Momentum and Surface Height

The discretized barotropic momentum and surface height equations, given by (2.138)

through (2.140), consist of surface height gradient, velocity divergence, coriolis, and forcing

terms. The general procedure for advancing this equation on the standard grid compared

to the procedure on a reduced grid as follows:
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Standard Grid

� Calculate \
uxes," i.e. averages,

of barotropic velocities

� Calculate di�erences of velocity

\
uxes" for surface height

equation.

� Calculate \
uxes," i.e.

averages, of surface height.

� Calculate di�erences of surface

height \
uxes" for barotropic

momentum equations.

� Calculate surface height �lter,

if necessary.

Reduced grid

� Interpolate meridional and

zonal barotropic velocities, or

point-to-point copy zonal

barotropic velocity at

interfaces.

� Calculate \
uxes," i.e. averages,

of barotropic velocities

� Average meridional velocity

\
uxes" at interfaces.

� Calculate di�erences of velocity

\
uxes" for surface height

equation.

� Interpolate or point-to-point

copy surface height at

interfaces.

� Calculate \
uxes," i.e.

averages, of surface height.

� Average surface height \
uxes"

at interfaces.

� Calculate di�erences of surface

height \
uxes" for barotropic

momentum equations.

� Calculate surface height �lter,

if necessary.

By this comparison it can be seen that the required modi�cations to the calculation

procedure consist mainly of extra steps inserted between standard calculations and mod-

i�cations to loops as described in Section 3.2.2. With this overview in mind, the details

are given below.

Surface Height Gradients

The surface height gradient terms, given by (2.145) and (2.146), are velocity grid

quantities that, like the pressure gradient terms of the baroclinic momentum equations,
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can be cast into a conservative 
ux form.

The calculation of gradients with type-1 interfaces begins with a T-type interpolation

of surface height, which is a tracer grid quantity, from the coarse tracer row to the inter-

face row. Latitudinal averages are computed in a U-loop, and longitudinal averages are

computed in an S-loop and a U-type average from the tracer interface row to the coarse

row computed. Finally, both the latitudinal and longitudinal gradients are calculated in a

U-loop, with the unneeded interface row left unde�ned. See the schematics of the similar

operation on the pressure gradient terms, Figure 3.32 and Figure 3.33.

The calculation of gradients with type-2 interfaces begins with a T-type point-to-

point copy of surface height from the �ne tracer row to the interface row. Latitudinal

averages are computed in a U-loop, and longitudinal averages are computed in an S-loop

and a U-type average from the �ne tracer row to the interface row computed. Finally, both

the latitudinal and longitudinal gradients are calculated in a U-loop, with the unneeded

interface row left unde�ned. See the schematics of the similar operation on the pressure

gradient terms, Figure 3.34 and Figure 3.35.

These two gradients are all that is needed for the update of the surface height, which

is performed in a T-loop.

Barotropic Velocity Gradients

The barotropic velocity gradients are similar to the surface height gradients, but are

calculated at tracer grid points. Again, averages are calculated, then di�erences are taken.

For a type-1 interface, the �rst step is a U-type point-to-point copy of the zonal

barotropic velocity from the �ne velocity row to the interface row. Latitudinal averages of

zonal velocity are calculated in a T-loop, while longitudinal averages of meridional velocity
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Figure 3.36: Procedure for calculating zonal barotropic velocity gradient at a type-1 in-

terface. Labeled arrows indicate interface rows. (1) U-type point-to-point copy of zonal

barotropic velocity from the �ne velocity row to the interface row. (2) Calculate latitudi-

nal averages, skipping tracer interface row. (3) Calculate zonal gradient, skipping tracer

interface row.

(3)(2)(1)

U

T

Figure 3.37: Procedure for calculating meridional barotropic velocity gradient at a type-1

interface. Labeled arrows indicate interface rows. (1) Calculate longitudinal averages,

skipping velocity interface row. (2) T-type average of resulting 
uxes from �ne velocity

row to interface row. (3) Calculate meridional gradient, skipping tracer interface row.
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Figure 3.38: Procedure for calculating zonal barotropic velocity gradient at a type-2 inter-

face. Labeled arrows indicate interface rows. (1) U-type interpolation of zonal barotropic

velocity from the coarse velocity row to the interface row. (2) Calculate latitudinal aver-

ages, skipping tracer interface row. (3) Calculate zonal gradient, skipping tracer interface

row.

(3)(2)(1)

U

T

Figure 3.39: Procedure for calculating meridional barotropic velocity gradient at a type-2

interface. Labeled arrows indicate interface rows. (1) U-type interpolation of meridional

barotropic velocity from the coarse velocity row to the interface row. (2) Calculate lon-

gitudinal averages, skipping coarse velocity row. T-type average of resulting 
uxes from

velocity interface row to coarse row. (3) Calculate meridional gradient, skipping tracer

interface row.

are calculated in a U-loop. Then the longitudinally averaged meridional velocity is T-type

averaged from the �ne velocity row to the interface row. Finally, both of the gradients are

calculated in a T-loop, with the unneeded interface row left unde�ned. These operations

are shown schematically in Figure 3.36 and Figure 3.37.

For a type-2 interface, the �rst step is a U-type interpolation of both the zonal and

meridional barotropic velocities from the coarse velocity row to the interface row. Latitu-

dinal averages of zonal velocity are calculated in a T-loop, while longitudinal averages of

meridional velocity are calculated in an S-loop. Then the longitudinally averaged merid-
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ional velocity is T-type averaged from the velocity interface row to the coarse row. Finally,

both of the gradients are calculated in a T-loop, with the unneeded interface row left un-

de�ned. These operations are shown schematically in Figure 3.38 and Figure 3.39.

Coriolis and Forcing Terms

The coriolis terms given by (2.143) and (2.144), being particularly simple in form, are

calculated in a U-loop, skipping the interface rows where their values are unneeded. The

forcing terms given by (2.141) and (2.142) are calculated in this manner as well.

Surface Height Filter

The surface height �lter of Section 2.3.8 is modi�ed in a di�erent manner for use

with the reduced grid. The computational mode that it is designed to suppress is de�ned

by the grid resolution. On the reduced grid, the resolution di�ers between latitude rows

at interfaces. So the �lter must be modi�ed not to operate across interfaces, and there-

fore between grids of di�erent resolution. This is accomplished by treating the interface

dummy row as a land row for the purposes of the �ltering calculation. The �lter con-

serves the surface height at land, so this method still conserves locally and globally. This

e�ectively separates the regions of di�ering resolution in a simple manner, allowing the

calculations described in Section 2.3.8 to be used with only the normal loop modi�cations

of Section 3.2.2.

3.5 Parallel Implementation

In order to avoid major changes to the model, the decomposition of the reduced

grid must work within the existing framework. Longitudinal decomposition is done as
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1 i1 i2 c(x)

Figure 3.40: An example of reduced grid domain decomposition for nine subdomains.

before with the restrictions that arise due to the fewer cells in the zonal direction in some

regions. Since the grid is coarsened at some latitudes, the domain must be broken up into

subdomains which still have whole numbers of the coarsest cells. Using Figure 3.40 as an

example, the domain cannot be broken longitudinally into three equally sized subdomains,

even though a similar standard grid could be made into three subdomains with 10 cells

each in longitude. While arbitrary resolutions could present a problem with load balance

because of this, in practice the resolution can be selected to give 
exibility in decomposing

the domain in this dimension.

Latitudinal decomposition is accomplished with a modi�ed algorithm. Again, no

ghost cell borders are included in these calculations.
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Algorithm 3.5.1. Reduced grid domain decomposition

Given:

c(y) fthe number of cells in the latitudinal directiong

c
(x)
j fthe number of cells in the longitudinal direction at latitude index j, for j =

1; : : : ; c(y)g
s fthe number of subdomains over which to decompose the domain latitudinallyg
wj fa weight whose value is proportional to the relative amount of work necessary

for the number of cells, c
(x)
j , at latitude row j, for j = 1; : : : ; c(y). The absolute value

of the weight is not signi�cant|only the relative valueg
Calculate:

j ( 1

Wavg (
1
s

Pc(y)

j0=1 wj0

for n = 1 to s� 1

t( 0

dn ( 0

repeat

t( t+ wj

dn ( dn + 1

j ( j + 1

until t �Wavg

ds ( c(y) � j + 1

Then each subdomain, n, will contain the points given by the indices

i = i0 +

n�1X
n0=1

dn0 for i
0 = 1; : : : ; dn;

where the valid range of indices is 1 to c(y), and any ghost cells which may be needed for

the numerical method employed have not been included.

The weights, wj , must be set empirically, but some reasonable bounds can be placed

on them. At one extreme, if the reduction in the number of cells from coarsening the grid

did not lessen the work, all of the weights would be set to a constant. At the other extreme,

with the reduction in work equaling the theoretical maximum, wj would be proportional

to the number of cells at each latitude. In practice, the correct choice was subject to trial-

and-error, and a slightly di�erent code implementation would undoubtedly have a better

optimum method. One of the choices which gave good results for some decompositions

was to set

wj = n
log 2
log 3

j ; (3.4)
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where nj is the number of reduced grid cells at latitude row j.

Additionally there is a restriction due to the implementation of the interfaces by

\dummy" rows (see Section 3.2.1.) A subdomain boundary may not be too near a grid

interface without introducing complexities which would require reorganization of the code

and algorithms. Since this is explicitly against the design goals, interfaces are restricted

such that the \dummy" rows may not be located at a subdomain boundary. This places

a limitation on the available decompositions for �xed numbers of subdomains. When the

number of desired subdomains increases, the available decompositions which meet the

above criteria may be few. However, this limitation is rarely an issue for the numbers of

processors which can eÆciently be used at a given resolution.
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Chapter 4

Limited Basin Simulations

Since the targeted application of the reduced grid method is the global ocean domain,

the �nal test of the method will be in this context. However, the time necessary for

integration of the model equations and the complexities of 
ow and topography make the

full global runs an impractical forum for looking at the detailed in
uence of the method.

The tests described in this chapter start at the simplest level possible that will exercise

the complete model. The comparatively short execution time of the �rst two tests enable

the examination of a large number of options. Proceeding to the last test of this chapter,

the execution times increase dramatically, and the number of options tested is greatly

reduced.

Level Depth to Tracer Depth to bottom Thickness

and U,V point of cell

1 50 100 100

2 223.57 347.14 247.14

3 607.08 867.01 519.87

4 1313.8 1760.5 893.48

5 2380.2 3000 1239.5

Table 4.1: Basin depth levels. All units are meters
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Figure 4.1: The horizontal grid for the standard resolution case of the midlatitude basin.
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Parameter value Parameter value

Horiz. Viscosity 109 cm2/s Basin width 63 degrees

Vert. Viscosity 20 cm2/s Basin height 40 degrees

Baroclinic step 60 min. Basin depth 3000 m

Barotropic step 2.5 min.

Table 4.2: Parameter values for the linear, wind-forced basin.

The �rst choice in simplifying the model runs is the choice of domain. By using

a 
at bottomed, rectangular domain with vertical walls at the boundaries, the e�ects

of varying topography are eliminated. The tests of this chapter will all use the same

topography and only vary the forcing applied. The basin, shown in Figure 4.1, is in the

northern hemisphere with vertical walls at 20 degrees and 60 degrees latitude and a width

of 63 degrees with vertical walls on the east and west as well. It has �ve vertical layers,

with the vertical grid de�ned as in Table 4.1.

4.1 Wind-Driven, Flat Bottomed Basin

The long time scales in the model equations are due to the thermohaline forcing,

the forcing due to the density variations caused by varying temperature and salinity. By

�xing the temperature and salinity of the model domain at spatially uniform values, the

tracer transport equations and the pressure gradient terms due to density variations can

be e�ectively removed from the runs without altering the code. This allows much shorter

runs to be accomplished at �rst. Two sets of simulations will be done with this \constant

tracers" condition.

In a simulation with spatially uniform tracer values, the only way to create a cir-

culation is via the momentum 
ux at the ocean surface. Again, for simplicity, this is
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Figure 4.2: Surface wind stress for the linear-wind-forced basin. The forcing is zonally

constant, with a zero meridional component.

Case Longitudinal spacing Latitudinal spacing

Fine 0.5 0.5

Standard 1.0 1.0

Coarse 3.0 1.0

Reduced 1.0 / 3.0 1.0

Table 4.3: Resolution of the four basin cases. Values are degrees.

assumed to be in the zonal direction only and to have variation in the latitudinal direction

only. Figure 4.2 shows the wind stress used. Because this forcing is linear, I will refer

to this test case as the linear-wind-forced basin. Various model parameters are shown in

Table 4.2. The resulting velocity �eld is expected to be a clockwise gyre with a narrowed

and intensi�ed western boundary current, as described by Pedlosky in [51] and [52]. This

case and the following is comparable in character to that used in [10] and [54].

Three di�erent cases of the standard grid model will be shown. One case, called the

\�ne grid", has a resolution of 0.5 degree in both longitude and latitude, giving it a total

of 126 by 80 horizontal cells. This case will be used as a reference result to compare the
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Figure 4.3: The horizontal grid for the reduced grid case of the midlatitude basin.

others against. The second case, called the \standard grid", has a resolution of 1 degree in

both longitude and latitude, giving it a total of 63 by 40 horizontal cells. The third case,

called the \coarse grid", has a latitudinal resolution of 1 degree as well, but a longitudinal

resolution of 3 degrees, giving a total of 21 by 40 horizontal cells. Table 4.3 summarizes

the resolutions of these cases.

Ten versions of the \reduced grid" case are presented, all having a resolution of 1 de-

gree in latitude but a longitudinal resolution which is 1 degree in the southern half of the

domain and 3 degrees in the northern half of the domain. Thus this grid has an interface

separating a region with resolution similar to the coarse grid case from a region with res-
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olution like that of the standard grid case. This is illustrated in Figure 4.3. The tracer

interface is located at 40 degrees latitude. The various reduced grid simulations di�er in

both the type of interface used (see Section 3.1.3) and the method used to interpolate the

coarse grid variables to the �ne grid.

The time steps used for the standard, coarse, and reduced grid resolution cases are

given in Table 4.2. The time step is limited by the latitudinal spacing for this simulation.

Thus the standard, coarse, and reduced grid cases, all having a latitudinal spacing of

1 degree, all use the same time steps. The �ne case, which has a latitudinal grid spacing

half as large as the others, uses time steps of half the size of those given in Table 4.2.

Previous work in nested primitive equation models has included linear, quadratic

polynomial, and cubic spline interpolation of model variables and/or 
uxes at grid inter-

faces (see [26], [30], and [76]). Here, four di�erent types of polynomial interpolation are

used to obtain �ne grid values from the coarse grid values at the interface. They represent

no interpolation, linear interpolation, quadratic interpolation, and cubic interpolation (see

Section A.4.1 for details). In addition, cubic spline interpolation is used in these cases.

No interpolation corresponds to using the average of neighboring quantities as the inter-

face value. As Section A.1 shows, this leads to conservation of second moments, which

is a potentially important property. However, this method is not expected to give good

results, as Section A.2 shows that it leads to poor accuracy at the interfaces.

4.1.1 Kinetic Energy

For each case, the model is run for 150 simulated days, which is enough to bring

the solution nearly to a steady state. A comparison of the �nal volume averaged kinetic

energy over the whole basin for the various cases is shown in Table 4.4. The coarse case
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Grid Int. Type Interpolation K. E. dynes/cm3 % \error"

Coarse n/a n/a 0.01664 18

Reduced 1 none 0.01384 -1.9

Reduced 1 linear 0.01458 3.3

Reduced 1 quadratic 0.01437 1.8

Reduced 1 cubic 0.01431 1.4

Reduced 1 cubic spline 0.01444 2.3

Reduced 2 none 0.01453 3.0

Reduced 2 linear 0.01429 1.3

Reduced 2 quadratic 0.01433 1.6

Reduced 2 cubic 0.01424 0.9

Reduced 2 cubic spline 0.01424 0.9

Standard n/a n/a 0.01423 0.9

Fine n/a n/a 0.01411 n/a

Table 4.4: Steady-state kinetic energy of the basin with linear wind forcing for various

interpolation orders, interface types, and grid resolutions.

di�ers from the �ne case by the most, with nearly 18 percent more energy. The standard

resolution case is the closest, as expected, with less than 1 percent error. The reduced

grid cases all have an error on the order of a few percent, with all but the type-1 case with

no interpolation having too much kinetic energy. This tendency of the reduced grid to

have too high a value is expected from the results of the coarse grid, since the resolution

of these two grids is the same for half the region.

The kinetic energy is shown as a function of time for the various resolutions in Fig-

ure 4.4. The large di�erence in the coarse case is immediately evident. The nearly co-

incident curves for the remaining resolutions illustrates the small size of the di�erences

between them and shows the similarity in their temporal behavior.

The kinetic energy as a function of time for the various reduced grid interface condi-

tions is shown in Figure 4.5 for a type-1 interface and Figure 4.6 for a type-2 interface,

with the �ne resolution case shown for reference. The reduced grid results show very good

agreement with the �ne case, the exception being the type-1 case with no interpolation.
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Figure 4.4: Volume averaged kinetic energy for the various grids with linear wind forcing.

The temporal behavior in that case is sluggish, i.e. the size of the 
uctuations is smaller,

when compared to the others.
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Figure 4.5: Volume averaged kinetic energy of the linear-wind-forced basin with a type-

1 reduced grid interface by interpolation type. The �ne resolution case is shown for

comparison.
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Figure 4.6: Same as Figure 4.5 except for a type-2 interface.
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4.1.2 Surface Height

Figure 4.7 shows the surface height of the �ne resolution case. There is a maximum

in the surface height which is located near the western boundary, and the minimum is

located in the northwestern corner of the basin. The zonal gradients across the western

edge are the strongest. It is in this region, where resolution will likely be important, that

the largest di�erences should be seen in the other cases.

Figure 4.8 shows the surface height of the standard resolution case. A comparison to

the �ne resolution case was made by averaging the �ne resolution surface height to the

resolution of the standard case. For this particular example, each 2 by 2 set of cells from the

�ne grid surface height was averaged to the corresponding single cell of the standard grid.

Similar averaging will be done for all of the remaining cases as well. Then the resulting

surface height was subtracted from that of the standard grid to obtain an \error" in the

standard resolution surface height, which is shown in Figure 4.9. As expected, the largest

di�erences are at the western boundary. The standard surface height is too low in the

region of the maximum and too high at the westernmost edge, next to the wall. Likewise

it is also too high at the northern and southern edges. Throughout most of the central

and eastern regions the di�erence is smaller. A closer look will be made later, after the

other cases are shown.

Figure 4.10 shows the surface height of the coarse resolution case. Again, a comparison

to the �ne resolution case was made by averaging the �ne resolution surface height to the

resolution of the coarse case, this time requiring 6 by 2 cell averages. The resulting

di�erence is plotted in Figure 4.11. The pattern of the di�erences is very similar to that of

the standard case, but the magnitude of the di�erences have increased by about an order
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of magnitude.

The in
uence of resolution in the western boundary region is very pronounced in

this test, so the e�ects of the coarsening of resolution across the mid-basin interface in the

reduced grid cases should be easy to observe. An example case is shown in Figure 4.12 and

Figure 4.13, showing the surface height and the di�erence of the surface height compared

to the �ne case for the type-1 interface with linear interpolation. This time the averaging

of the �ne resolution case for comparison was accomplished as with the standard grid for

the southern half of the basin and the coarse grid for the northern half.

One feature common to all of the reduced grid cases is the relatively large di�erence

observed along the western boundary in the northern half of the basin. This is comparable

to that found in the coarse case, but it extends no more than one cell into the southern half

of the basin. In the southern half, the di�erence observed along the western boundary is

comparable to that in the standard case. Another common feature is the relatively smaller

di�erence seen up to 10 degrees from the western boundary. The sign of this di�erence

is opposite that found in the standard and coarse cases in this region. Its magnitude is

dependent on the order of interpolation used and the type of the interface.

Another view of the data will make comparison easier. For all cases, the zonal root-

mean-square di�erence is calculated by

�rms
j =

"
1

ni

niX
i0=1

�
�i0;j � �

f
i0;j

�2# 1
2

; (4.1)

where ni is the number of cells in the zonal direction, � is the surface height, and �f

is the surface height of the �ne resolution case. This quantity is plotted for the various

resolutions in Figure 4.14 with the reduced case shown being that with linear interpolation.

This more clearly shows the similarity of the reduced grid solution to that of the coarse grid
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in the northern half and to the standard grid in the southern half. There is a range within

3 degrees of the interface where the lower di�erences from the southern region are matched

to the higher di�erences in the northern region. At the higher end of this range, noise can

be seen in the plot. This same noise is seen in the two-dimensional plot of Figure 4.13,

indicating numerical noise added by the interface. This is not the same numerical noise

as discussed in Section 2.3.8, which was a two-dimensional \checkerboarding", though the

present noise could be a source of such a component in the solution.

The zonal r.m.s. di�erences for the various reduced grid interface conditions are shown

in Figure 4.15 for a type-1 interface and Figure 4.16 for a type-2 interface. Di�erences

between the reduced grid cases begin to emerge. All of the cases show the oscillatory noise

north of the interface that was mentioned previously, with the exception of the type-2 case

with no interpolation. But while it doesn't produce this type of noise, the relative size of

the error is comparatively large in the vicinity of the interface. The type-1 case with no

interpolation has much larger errors than all of the other cases across the whole domain.

The type-1 case with linear interpolation shows the smallest error in the vicinity of the

interface, as well as the smallest overall error.
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Figure 4.7: Surface height of the linear-wind-forced, �ne resolution basin.
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Figure 4.8: Surface height of the linear-wind-forced, standard resolution basin.
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Figure 4.9: Di�erence between the surface height of the standard resolution and the �ne

resolution cases of the linear-wind-forced basin.
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Figure 4.10: Surface height of the linear-wind-forced, coarse resolution basin.
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Figure 4.11: Di�erence between the surface height of the coarse resolution and the �ne

resolution cases of the linear-wind-forced basin.
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Figure 4.12: Surface height of the linear-wind-forced, type-1 reduced grid basin with linear

interpolation at the interface.
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Figure 4.13: Di�erence between the surface height of the reduced grid and the �ne resolu-

tion cases of the linear-wind-forced basin, with linear interpolation at the type-1 reduced

grid interface.
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Figure 4.14: Zonal r.m.s. di�erence in surface height between various grid resolutions and

the �ne resolution case for the linear-wind-forced basin.
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Figure 4.15: Zonal r.m.s. di�erence in surface height between type-1 reduced grid cases
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Figure 4.16: Same as Figure 4.15 except for a type-2 interface.
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4.1.3 Barotropic Velocity

It is expected that the noise seen in the surface height will occur in the same regions

as noise in the velocity. Figure 4.17 shows the velocity for the standard grid case. Once

again the narrowed and intensi�ed western boundary is observed. Flow in this boundary

current is strongly meridional throughout most of the middle latitudes and thus across

any reduced grid interface. Figure 4.18 and Figure 4.19 show the same �eld for the coarse

grid and a representative reduced grid.

Figure 4.20 shows the meridional velocity at 40 degrees latitude, i.e. at the tracer grid

interface, for the coarse and standard cases as well as one representative reduced grid case.

The �ne case is very nearly the same as the standard case and is not shown for clarity.

The same data is shown in a di�erent manner in Figure 4.21, where it is integrated from

the western boundary to give a northward transport. The coarse grid velocity is seen to be

slightly high in the western boundary current with a correspondingly high transport. The

representative reduced grid velocity is just the opposite, with transport that is slightly

low in the boundary current.

Figure 4.22 and Figure 4.23 show the same data for various types of reduced grid

interpolations at type-1 and type-2 interfaces, respectively. For the type-2 interface, how-

ever, the velocity interface location has changed, so the data used for these plots is taken

from 39 degrees latitude. This makes direct comparison between the type-1 and type-2

interfaces diÆcult, but each plot shows the standard resolution data at the proper lati-

tude for comparison. Figure 4.24, and Figure 4.25 show the integrated transport for the

same cases. Velocities for the type-2 interface are generally similar to one another, again

with the exception of the case with no interpolation. There is more variation between the
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type-1 interface cases, and the linear interpolation case again stands out as the overall

closest to the standard case.

Proceeding to the zonal velocity, Figure 4.26 shows the zonal velocity at 40 degrees

latitude, i.e. at the tracer grid interface, for the coarse and standard cases as well as one

representative reduced grid case. The �ne case is very nearly the same as the standard

case and is not shown for clarity. Immediately, the error in the reduced grid velocity stands

out, well larger than the coarse grid velocity error. Figure 4.27 and Figure 4.28 show the

same data for the various types of reduced grid interpolations and interface types. All of

them have the same large zonal velocity at the western edge, generally with a fair amount

of noise. The type-1 cases with no interpolation and with cubic spline interpolation are

noteworthy for their large oscillations. The type-2 case with no interpolation gives results

nearly as poor as the comparable type-1 case. The other cases are similar to one another.

The only stand-out is the type-2 case with linear interpolation, which is somewhat more

smooth and has dropped to near the standard values by 10 degrees longitude. Results

from another wind-driven basin in which there is more zonal velocity along the interface

will be presented later to determine whether or not the error grows with the strength of

the 
ow.
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Figure 4.17: Barotropic velocity of the linear-wind-forced, standard resolution basin.
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Figure 4.18: Barotropic velocity of the linear-wind-forced, coarse resolution basin.
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Figure 4.19: Barotropic velocity of the linear-wind-forced, reduced grid basin.
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Figure 4.20: Meridional barotropic velocity of the linear-wind-forced basin at 40 degrees

latitude by grid resolution.
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Figure 4.21: Integrated northward transport of the linear-wind-forced basin at 40 degrees

latitude by grid resolution.
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Figure 4.22: Meridional barotropic velocity of the linear-wind-forced basin at the type-1

reduced grid interface by interpolation type. Results from the standard resolution case

are shown for comparison.
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Figure 4.23: Same as Figure 4.22 except for a type-2 interface.
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Figure 4.24: Integrated northward transport of the linear-wind-forced basin at the type-1

reduced grid interface by interpolation type. Results from the standard resolution case

are shown for comparison.
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Figure 4.25: Same as Figure 4.24 except for a type-2 interface.
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Figure 4.26: Zonal barotropic velocity of the linear-wind-forced basin at 40 degrees latitude

by grid resolution.
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Figure 4.27: Zonal barotropic velocity of the linear-wind-forced basin at the type-1 reduced

grid interface by interpolation type. Results from the standard resolution case are shown

for comparison.
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Figure 4.28: Same as Figure 4.27 except for a type-2 interface.
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4.1.4 Meridional Overturning

An important baroclinic 
ow is the meridional overturning, given by the zonally

averaged meridional velocity integrated from the bottom to the surface. It is obtained by

the formula

	j;k =
�
�10�6

�
h cos�j

kX
k0=km

dzk0
X
i

vi;j;k0; (4.2)

where h is the grid spacing in meters at the equator, dzk is the thickness of the level k

in meters, and v is the baroclinic meridional velocity in meters per second. The factor of

10�6 converts to Sverdrups, or 106 m3/s.

Figure 4.29 shows the meridional overturning for the standard resolution case. The

basin has upwelling at the northern and southern boundaries with weaker downwelling

throughout most of the domain. The minimum values of the streamfunction occur in the

middle latitudes of the basin. Again, the �ne and standard resolution streamfunctions are

nearly identical, so only one is shown.

The overturning is very similar for all cases, so di�erences are plotted. Figure 4.30

shows the di�erence between the coarse and standard resolution overturning. In both the

northern and the southern halves of the domain the coarse resolution overturning is too

weak by a few percent. Figure 4.31 shows the di�erence between a reduced grid case and

the standard case on the same scale. In the northern half of the domain, where resolution

is the same as that of the coarse grid, the di�erences are nearly identical. However, in

the southern half, where the resolution is the same as the standard grid, the errors are

very small. This is similar to the behavior found above for other 
ow properties, but the

overturning does not seem to su�er from numerical noise generated by the interface.
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Figure 4.29: Meridional overturning of the linear-wind-forced, standard resolution basin.

Positive values indicate clockwise circulation.



136

-0.17

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

Sv

Latitude

D
e
p
t
h

20 25 30 35 40 45 50 55 60

600

1200

1800

2400

3000

3600

Figure 4.30: Di�erence between the meridional overturning of the coarse and standard

resolution cases of the linear-wind-forced basin.
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Figure 4.31: Same as Figure 4.30 except for the reduced grid and standard cases.
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Figure 4.32: Zonal and Meridional surface wind stress for the \real"-wind-forced basin.

Both components of the forcing are zonally constant.

4.2 Another Wind-Driven, Flat Bottomed Basin

The previous test had strong 
ow across the reduce grid interfaces, but had only weak


ow along the interfaces. Results from another wind-driven basin will be presented here

in which there is greater 
ow along the interface. The only changes made to the setup of

the runs is the wind forcing, which is shown in Figure 4.32. There is now a meridional

component to the wind stress, though both the zonal and meridional components are still

zonally constant. This wind forcing is based on observed global, annual mean wind stress

data from Hellerman and Rosenstein in [32]. Because this forcing is derived from data, I

will refer to this test case as the \real"-wind-forced basin.

The results of the previous wind-driven basin have demonstrated that the reduced

grid with no interpolation produces large errors at the interfaces. Because of these errors

it will not be included in further tests, even though this method was of interest for its

conservation properties as detailed in Section A.1. Therefore, �ne, standard, and coarse
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resolution cases are run with the modi�ed forcing along with reduced grid cases having

linear, quadratic, cubic polynomial, and cubic spline interpolation for both type-1 and

type-2 interfaces.

4.2.1 Barotropic Velocity

The results for kinetic energy and surface height are very similar to the previous

wind-driven case, and all of the comments under that section apply equally to the results

of this case. But the velocity at the interface is the reason for this run, and Figure 4.33

shows the barotropic 
ow �eld for the standard resolution case. Notice that the 
ow at

40 degrees latitude has a much stronger zonal component than the previous case. The


ow is now a double gyre, though the narrowed and intensi�ed western boundary current

remains.

Figure 4.34 shows the meridional velocity at 40 degrees latitude, i.e. at the tracer grid

interface, for the coarse and standard cases as well as one representative reduced grid case.

The �ne case is very nearly the same as the standard case and is not shown for clarity.

The same data is shown in a di�erent manner in Figure 4.21, where it is integrated from

the western boundary to give a northward transport. The coarse grid velocity is seen to be

slightly high in the western boundary current with a correspondingly high transport. The

representative reduced grid velocity is just the opposite, with transport that is slightly

low in the boundary current.

Figure 4.36 and Figure 4.37 show the same data for various types of reduced grid

interpolations at type-1 and type-2 interfaces, respectively. Again, the type-1 data is from

40 degrees latitude, while the type-2 data is from 39 degrees, with the appropriate standard

case values shown for comparison. Figure 4.38, and Figure 4.39 show the integrated
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transport for the same cases. Again the velocities for the type-2 interface are generally

similar to one another. The best of these is the case with quadratic interpolation. There is

more variation between the type-1 interface cases, and the linear interpolation case again

stands out as the overall best.

Figure 4.40 shows the zonal velocity at 40 degrees latitude, i.e. at the tracer grid

interface, for the coarse and standard cases as well as the type-1 reduced grid case with

linear interpolation. The �ne case is very nearly the same as the standard case and is not

shown for clarity. Compared to the linear-wind-forced basin, the reduced grid velocity is

much closer to the standard result, though it is again too high in the boundary current

region.

Looking more closely at the reduced grid results, Figure 4.41 and Figure 4.42 show

the same data for the various types of reduced grid interpolations and interface types. All

have a zonal velocity which is too large at the western edge of the domain, though they

are smoother with this forcing than with the linear zonal forcing. The linear case is again

the closest, though it is perhaps the least smooth.
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Figure 4.33: Barotropic velocity of the \real"-wind-forced, standard resolution basin.
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Figure 4.34: Meridional barotropic velocity of the \real"-wind-forced basin at 40 degrees

latitude by grid resolution.
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Figure 4.35: Integrated northward transport of the \real"-wind-forced basin at 40 degrees

latitude by grid resolution.
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Figure 4.36: Meridional barotropic velocity of the \real"-wind-forced basin at the type-1

reduced grid interface by interpolation type.
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Figure 4.37: Same as Figure 4.36 except for a type-2 interface.
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Figure 4.38: Integrated northward transport of the \real"-wind-forced basin at the type-1

reduced grid interface by interpolation type.
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Figure 4.39: Same as Figure 4.38 except for a type-2 interface.
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Figure 4.40: Zonal barotropic velocity of the \real"-wind-forced basin at 40 degrees lati-

tude by grid resolution.
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Figure 4.41: Zonal barotropic velocity of the \real"-wind-forced basin at the type-1 re-

duced grid interface by interpolation type.
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Figure 4.42: Same as Figure 4.41 except for a type-2 interface.
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4.2.2 Meridional Overturning

Figure 4.43 shows the meridional overturning for the standard resolution case. Again

the basin has upwelling at the northern and southern boundaries with weaker downwelling

throughout most of the domain. However, this time the region of maximum downwelling

is shifted further south.

Figure 4.44 shows the di�erence between the coarse and standard resolution over-

turning. As in the linear-wind-forced basin, the overturning is too weak by a few percent

throughout the domain. The di�erence between the reduced grid and the standard grid,

shown in Figure 4.45, is even more striking with the current forcing. In the previous basin,

the grid interface was located in a region where the value of the overturning was small and

relatively constant. This time the values are larger in the neighborhood of the interface,

yet the di�erence again drops to nearly zero immediately on crossing the interface to the

southern half of the basin. However, some numerical noise is generated, as the streamlines

are less smooth.
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Figure 4.43: Meridional overturning of the \real"-wind-forced, standard resolution basin.

Positive values indicate clockwise circulation.
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Figure 4.44: Di�erence between the meridional overturning of the coarse and standard

resolution cases of the \real"-wind-forced basin.
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Figure 4.45: Same as Figure 4.44 except for the reduced grid and standard cases.
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4.3 Wind and Thermohaline Driven, Flat Bottomed Basin

Now that some of the basic features of the reduced grid model have been explored,

longer runs can be made. Whereas in the previous basin runs the time necessary to bring

the model to a steady-state was reduced by eliminating thermohaline forcing, the basin

runs described in this section will use both wind and thermohaline forcing. The time it

takes the system to reach a steady-state solution is very much longer in this case. Whereas

the wind-forcing only cases took only 150 simulated days to reach a quasi-steady-state, it

takes thousands of years for the current case to do so.

Because of the much larger expenditure of computer time to produce these results, not

as many runs will be made. The results of the wind-driven basins have provided enough

information to narrow this case to three runs. Once again a standard resolution case,

having grid spacings of 1 degree in both longitude and latitude, and a coarse resolution

case, having grid spacings of 3 degrees longitude and 1 degree latitude, will be used

for comparison against the reduced grid. The reduced grid method which consistently

produced the best results in the previous two tests was that with a type-1 interface and

linear interpolation. This will be the only method used for the remaining model tests.

The domain will still be the 
at-bottomed basin described in Section 4.1, and the

wind stress forcing will be the forcing of Figure 4.32. The added thermohaline forcing

consists of Newtonian surface restoring 
ux given by

FluxT = �
dztk=1

�
(Tk=1 � T �) ; (4.3)

where dztk=1 is the thickness of the top layer, � is a restoring timescale, and T � is the

reference surface value toward which to restore. In all of these runs, a value of 30 days

is used for � . The reference surface values used for the basin are zonally constant with a
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Figure 4.46: The reference surface values of temperature and salinity to use in calculating

surface thermohaline forcing for the fully-forced basin.

linear pro�le, shown in Figure 4.46. Both the wind and thermohaline forcings are time-

independent. The horizontal tracer di�usion coeÆcient is 2�107 cm2, while the vertical

tracer di�usion coeÆcient varies with depth, from 0.2 cm2/s in the top layer to 1.3 cm2/s

for the bottom layer. The initial condition for temperature is a highly idealized, zonally

constant depth pro�le producing a value of 2.0 degrees below 2000 meters. Salinity is

initialized to a constant 34.9 parts per thousand (ppt).

Timesteps for the spinup of the model to equilibrium are 1 day for the tracers and 1
2

hour for the momentum. The use of unequal timesteps to accelerate the convergence of

ocean models to a steady-state is discussed in [17]. The barotropic equations are subcycled

40 times per baroclinic timestep. Each case was run with these steps for at least 8000

tracer years, bringing the solutions close to equilibrium. At the end of this initial run,

each was run for an additional 10 years with equal timesteps of 1
2
hour to eliminate any

errors associated with time step splitting.
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Grid K. E. dynes/cm3 % \error"

Coarse 0.3899 3.7

Reduced 0.3686 2.0

Standard 0.3761 n/a

Table 4.5: Steady-state kinetic energy of the wind and thermohaline driven basin for the

three grid resolution cases.

4.3.1 Barotropic Velocity

The �nal kinetic energies of the three cases are shown in Table 4.5. The kinetic

energies are over 25 times larger than in the wind-driven only runs, as there is stronger

baroclinic 
ow brought about by the density forcing. Both the coarse and reduced grid

cases are closer to the standard case than in the wind-driven only runs. The barotropic

velocities are shown in Figure 4.47 through Figure 4.49 and are very similar to those of

the \real"-wind-forced basin of Section 4.2.

The velocities at the interface are shown in Figure 4.50 through Figure 4.52. Referring

back to the velocities of the \real"-wind-driven runs (Figure 4.34 to Figure 4.42), it is

apparent that the di�erences in the interface velocities of the reduced grid case compared

to the standard resolution case have increased in the presence of thermohaline forcing.

The zonal velocity in the western boundary current is again too high, and the meridional

velocity and transport is lower. When moving to the global case, the signi�cance of these

along- and cross-interface velocity di�erences will be examined for their impacts on global


ow characteristics.
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Figure 4.47: Barotropic velocity of the fully-forced, standard resolution basin.
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Figure 4.48: Barotropic velocity of the fully-forced, coarse resolution basin.
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Figure 4.49: Barotropic velocity of the fully-forced, reduced grid basin.
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Figure 4.50: Meridional barotropic velocity of the fully-forced basin at the latitude row

just south of the reduced grid interface location for various grid resolutions.
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Figure 4.51: Integrated northward transport of the fully-forced basin at the latitude row

just south of the reduced grid interface location for various grid resolutions.
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Figure 4.52: Zonal barotropic velocity of the fully-forced basin at the latitude row just

south of the reduced grid interface location for various grid resolutions.
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4.3.2 Surface Height

The surface height for the standard resolution case is shown in Figure 4.53. The

deviations of the height from the mean are much larger than in the wind-driven only runs.

The di�erences between the standard resolution surface height and that of the coarse and

reduced grid cases are shown in Figure 4.54 and Figure 4.55. The coarse grid error is of

the same character as the previous runs, the largest errors being at the western edge. The

reduced grid error is smaller in comparison to the coarse error in this case and is more

smooth. The zonal r.m.s. di�erence shown in Figure 4.56 also shows a smoother transition

from the �ne to the coarse regions of the reduced grid.
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Figure 4.53: Surface height of the fully-forced, standard resolution basin.
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Figure 4.54: Di�erence between the surface height of the coarse resolution and the standard

resolution cases of the fully-forced basin.
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Figure 4.55: Di�erence between the surface height of the reduced grid and the standard

resolution cases of the fully-forced basin.
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Figure 4.56: Zonal r.m.s. di�erence in surface height between various grid resolutions and

the standard resolution case for the fully-forced basin.
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4.3.3 Meridional Overturning

Figure 4.57 shows the meridional overturning for the standard resolution case. A

much more complex circulation is revealed for this run than for the wind-driven only

runs. Instead of simple overturning cells of opposite sign north and south, there is a more

basinwide positive overturning that varies in strength considerably over the domain.

Di�erences between the coarse and reduced grid overturning and the standard case

are shown in Figure 4.58 and Figure 4.59. The di�erences are also more complex, not

corresponding so easily to a strengthening or weakening of the main overturning cells,

but rather to a combination of this and shifts in the locations of maxima and minima.

The coarse overturning has di�erences throughout the basin, as large as 20 percent in

some locations. The reduced grid errors are generally under 10 percent and are restricted

to the northern half of the basin that has the coarser resolution. Right at the interface

location, the di�erence plot shows a small but signi�cant di�erence of opposite sign than

the coarse case. This is likely the e�ect of the interface velocity errors showing in the

zonally averaged overturning.
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Figure 4.57: Meridional overturning of the fully-forced, standard resolution basin. Positive

values indicate clockwise circulation.



161

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sv

Latitude

D
e
p
t
h

20 25 30 35 40 45 50 55 60

600

1200

1800

2400

3000

Figure 4.58: Di�erence between the meridional overturning of the coarse resolution and

standard resolution cases of the fully-forced basin.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sv

Latitude

D
e
p
t
h

20 25 30 35 40 45 50 55 60

600

1200

1800

2400

3000

Figure 4.59: Same as Figure 4.58 except for the reduced grid and standard cases.
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4.3.4 Temperature and Salinity

Figure 4.60 shows the temperature for the second depth level (223.57 m) of the stan-

dard resolution case. The initial condition of zonally constant temperature has evolved

to resemble the two-dimensional spatial variations of the surface height, with a maximum

in the southwestern region and a western boundary. Again, the standard case is used for

comparison with the coarse and reduced grid cases. The resulting di�erences are shown

in Figure 4.61 and Figure 4.62. Figure 4.63 through Figure 4.65 show the same for the

model salinity. The di�erences are very similar in both spatial distribution and relative

size to those of the surface height shown above.

Another view of tracer di�erences is shown in Figure 4.66 through Figure 4.69. Zonal

r.m.s. di�erences of the coarse and reduced grid cases with respect to the standard case

are shown for both the �rst depth level and the bottom depth level. At the surface, the

reduced grid di�erences are very similar to those of the surface height. That is, they are

much lower than those of the coarse grid throughout the southern part of the domain,

very similar in the northern part, and increase rapidly when approaching the interface

from the south with a noisy signal just north of the interface. At depth, however, the

reduced grid di�erences are lower throughout the model domain. This indicates that the

resolution in the deeper layers is less of a factor in determining the error than is the overall

basin circulation. Both temperature and salinity were initialized with spatially uniform

distributions in the deepest layer. The interaction with the upper layers through the

basinwide circulation creates variation in these quantities, but they remain much more

uniform than those near the surface and require fewer grid cells to resolve. Then since

the reduced grid case produces a better basinwide circulation than the coarse grid case, as
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shown by Figure 4.58 and Figure 4.59, the error in the deep layers is lower in the reduced

grid case.
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Figure 4.60: Temperature at the second depth level of the fully-forced, standard resolution

basin run.



165

-0.3 0 0.3 0.6 0.9 1.2 1.5 1.8

C

longitude

l
a
t
i
t
u
d
e

0 6 12 18 24 30 36 42 48 54 60

24

30

36

42

48

54

60

Figure 4.61: Di�erence between the temperature of the coarse resolution and standard

resolution cases of the fully-forced basin at the second depth level.
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Figure 4.62: Same as Figure 4.61 except between the reduced grid and standard resolution

cases.
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Figure 4.63: Salinity at the second depth level of the fully-forced, standard resolution

basin run.
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Figure 4.64: Di�erence between the salinity of the coarse resolution and standard resolu-

tion cases of the fully-forced basin at the second depth level.
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Figure 4.65: Same as Figure 4.64 except between the reduced grid and standard resolution

cases.
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Figure 4.66: Zonal r.m.s. di�erences in temperature relative to the standard case for the

coarse and reduced cases of the fully-forced basin at the surface depth level.
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Figure 4.67: Same as Figure 4.66 except for the bottom depth level.
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Figure 4.68: Zonal r.m.s. di�erences in salinity relative to the standard case for the coarse

and reduced cases of the fully-forced basin at the surface depth level.

p.p.t.
35 45403025 55

0.0015

Latitude
6050

0.003

0.0005

0

Coarse level 5

Reduced level 5

0.001

20

0.0035

0.0025

0.002

Figure 4.69: Same as Figure 4.67 except for the bottom depth level.
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4.4 Summary of Limited Basin Runs

It is again noted that the simple mid-latitude basin described in this chapter is not in

any way a targeted problem for the reduced grid method. It has been, however, a useful

test case in which the in
uence of the method on the model equations can be demonstrated

more clearly than in a larger and more complicated domain. Tracer �elds, surface height,

and meridional overturning show good agreement on their respective subgrids, with little

degradation at the interface. The deeper layers show small di�erences with little sensitivity

to the local reduced grid resolution. It has been shown that signi�cant errors in both

transport across an interface and velocity along interfaces can occur. Thus, when moving

to the global runs, the impact of these types of errors should be noted.

Other cases are used in the literature for nested grid modeling which test the prop-

agation of anomalies between coarse and �ne grids. See [63] for tests with a barotropic

modon and a baroclinic vortex and [30] for a test with a Gaussian surface height per-

turbation. However, the anomalies are generally mesoscale features of no more than a

few hundred kilometers and not in the regime of application of the reduced grid method.

Di�erent choices are necessary for a global method with long timescales, notably that of

conservation in preference to smoothness at interfaces.

It has been necessary to reduce the number of model options and grid resolutions

tested as the complexity of the model con�guration has increased the amount of computer

time necessary for solution. Two types of reduced grid interface were included in the

�rst tests. One of these was been dropped as a result of these practical considerations.

Likewise, the �rst test began with a large number of interpolation options at the interface.

As with the interface type, empirical results were used to select which options would be
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used in the more resource consuming cases. As mentioned previously, the type-1 interface

with linear interpolation will be the method used for the global runs. However, more work

could be done to test options in the last case in this chapter, as well as the global runs of

the next chapter.
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Chapter 5

Global Simulations

The previous model runs were presented to get an idea of the behavior of the reduced

grid method prior to runs with more complicated geometry and boundary conditions.

However, the reduced grid method is particularly targeted at global domains where it can

keep cells of more uniform size. It is in this context that gains in allowable timestep are

expected while minimizing the in
uence of the grid interfaces.

This chapter will show results of the reduced grid model compared to the original

model. A standard con�guration of the models is detailed which is similar to published

results of similar models. Comparisons between the standard and reduced grid model �elds

show the e�ects of the reduced grid on both overall results and details at the interfaces.

Execution times are presented for a range of processor numbers and broken down by model

component to discern the di�erences in eÆciency of the codes on a parallel, distributed

memory computer.
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5.1 Model Con�guration and Forcing

Two runs are compared in this chapter. The �rst uses a standard latitude-longitude

grid with �ltering, while the second uses the reduced grid described in Section 3.1.2. With

the further exception of di�ering time steps, the simulations are otherwise identical. The

speci�c de�nition of topography in the ocean model is covered in Section 2.3.2, and the

modi�cations for the reduced grid model are given in Section 3.4.1. However, each run

uses the same topography, shown in Figure 5.1. Most model parameters are directly

comparable to those found in [16], which describes a set of model runs, one of which is

directly comparable to the present runs.

The details of the de�nition of the reduced grid used were given in Section 3.1.2.

Grid interfaces are located at 60 and 80 degrees north latitude, and at 60 degrees south

latitude. The model domain only extends to 80 degrees in the south due to the presence

of land at every point further south than that. Thus the standard grid model has a grid

of 144 cells in longitude, 68 cells in latitude, and 23 depth levels, giving a 2.5�2.5 degree

resolution. This gives 225,216 model cells for the standard grid. The reduced grid only

requires 178,112 cells for the same resolution | a reduction of nearly 21 percent.

The topography is obtained by a multistep process. Data with a resolution of 1 de-

gree is regridded to the 2.5 degree resolution of these runs by determining whether a

cell contains more water or land. The regridded data is further modi�ed to eliminate

non-advective cells (those with a non-zero tracer point surrounded by four zero velocity

points) and to ensure the separation of the Atlantic and Paci�c basins in Central Amer-

ica. Following the procedure of [16], each ocean point is then given a minimum depth of

2500 m, and a smoothing function is applied multiple times. While the smoothing is not
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Level Depth to Tracer Depth to bottom Thickness

and U,V point of cell

1 12.5 25 25

2 37.5 51.25 26.25

3 65 81.75 30.5

4 98.5 118.5 36.75

5 138.5 161.75 43.25

6 185 212.5 50.75

7 240 275 62.5

8 310 360 85

9 410 477.5 117.5

10 545 627.5 150

11 710 807.5 180

12 905 1017.5 210

13 1130 1262.5 245

14 1395 1557.5 295

15 1720 1922.5 365

16 2125 2350 427.5

17 2575 2800 450

18 3025 3250 450

19 3475 3700 450

20 3925 4150 450

21 4375 4600 450

22 4825 5050 450

23 5275 5500 450

Table 5.1: Vertical grid level de�nitions for the global run. All depths are in meters.
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Parameter value

Horiz. Viscosity 109 � (1 + 9� cos�) cm2/s

Horiz. Di�usivity 2� 107 cm2/s

Vert. Viscosity 20 cm2/s

Vert. Di�usivity 0.2 (surface) { 1.3 (bottom) cm2/s

Table 5.2: Mixing parameters for the global runs.

necessary from a numerical stability standpoint, as is often the case for a rigid-lid model,

it is reasonable to limit topographical features to those that are well resolved by the grid.

Then the depth data is discretized to the 23 level vertical grid de�ned in Table 5.1.

It is not strictly necessary to modify the resulting topography data for use with

the reduced grid. The model will use the data speci�ed at the model points each grid

region de�nes and ignore the rest (see the reduction operation of Section 3.3). However,

to eliminate the di�erences in topography from the comparison between the standard

and reduced grid models, a further step is made for the topography data used on the

standard grid. The depth information is averaged down to the level of the reduced grid,

and then each set of standard grid cells is set to the level of the corresponding reduced cell.

Using the terminology developed in Section 3.3, this corresponds to an average followed

by an expansion. The resulting standard grid topography is coarser than required by the

standard model grid. However, since the small scale model features will be �ltered from the

model variables at each timestep, it is not certain that the extra topographical information

is signi�cant. This approach of using identical topography in both the standard and

reduced cases allows the isolation of changes in the solution due to the numerics of the

reduced grid.

Table 5.2 gives the viscous and di�usive parameters used. The latitudinally depen-

dent horizontal viscosity is employed to reduce the numerical errors caused by insuÆcient
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vertical resolution in the equatorial region while not adversely a�ecting the stability re-

quirements at high latitudes. The higher horizontal viscosity combined with the coarser

model resolution compared with the limited basin test cases will likely yield smoother

results and weaker boundary currents, possibly reducing the errors of the reduced grid

method.

Surface forcing consists of speci�ed wind stress and tracer restoring. The wind stress

data is obtained from the monthly mean data of Hellerman and Rosenstein in [32], the

annual mean of which is shown in Figure 5.2. Surface temperature and salinity are restored

to data given by Levitus in [42] by the same process given in Section 4.3. Both of these

data sets are regridded for the model by a process similar to and consistent with that of

the topography data. Linear interpolation in time from these monthly mean data sets

eliminates temporal discontinuities.

The model is initially at rest, i.e. all model velocities are zero. Initial temperatures

and salinities are obtained from Levitus data. The zonal means of these initial conditions

are shown by basin in Figure 5.3 and Figure 5.4. The de�nitions of the Atlantic and

Indopaci�c basins, which will be used for many of the global model results, are shown in

Figure 5.5. Since these initial conditions are provided from ocean observations, they are

also used for comparing model results to the physical ocean. Reference will be made to

the initial condition �gures at times as the model results are given, though the emphasis

will be on comparing the two model cases.

Model timesteps are di�erent for tracers and velocities, as was discussed for the

wind and thermohaline forced basin of Section 4.3. The basic tracer step is 6 hours, the

baroclinic velocity step is 600 seconds, and the barotropic equations are subcycled 40 times

per baroclinic step. In addition, the tracer step is larger in the deepest layers, increasing
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to a value of 5 times the surface step at the bottom layer. This technique accelerates the

convergence of the model solution to a steady state, since the deepest layers have small

velocities and are the slowest to equilibrate. It is theoretically possible to converge to

a di�erent state with this method, but in practice this is not believed to occur. Again

refer to [17] for details of the behavior of ocean models with this acceleration. Note that

these timesteps, which are limited by numerical stability, are smaller than those in other

published works with a similar model con�guration, [16] in particular. The reason lies in

the application of �ltering in the LLNL ocean model.

Fourier �ltering, as described in Section A.5, is applied for the standard, or base, case

at latitudes of 60 degrees and higher. The tracers and baroclinic velocities are �ltered at

each timestep, with a reference latitude of 51 degrees for tracers and 54 degrees for the

velocities. However, barotropic velocities and surface height are not �ltered, thus limiting

the barotropic timestep. It was not possible to increase the baroclinic step relative to the

barotropic step by a larger number of subcycles. The instability that resulted from doing

so seems to be due to a failure of the assumption that the forcing varies slowly enough

during the barotropic subcycling to be held constant (see Section 2.2.3).

Other models �lter the barotropic velocities and surface height in the same manner

as the other model variables. While a larger allowable timestep will result, the tradeo�s in

extra computation time can be large due to both the large number of barotropic timesteps

and the diÆculties in achieving load balance of the code on the parallel computational

platform used. A quick implementation of �ltering for the barotropic variables con�rmed

a stability limited step four times larger than the standard case. It also con�rmed a

signi�cantly larger computational cost, enough to yield no net gain in performance. The

implementation of the work of [46] to the �ltering of these variables could be eÆcient



178

enough to be useful on parallel architectures, but this is speculative.

One goal of the reduced grid model was to allow larger timesteps while eliminating

the need for �ltering. This goal has been realized, as the reduced grid global case is stable

with timesteps four times larger than the standard case, while entirely eliminating the

need for �ltering. Thus the tracer step is 1 day, the baroclinic step is 2400 seconds, and

the barotropic equations still require only 40 subcycles per baroclinic step. The same

acceleration of the tracer equations in the deep ocean is used.

Both the standard and reduced grid cases are integrated with the given timesteps for

at least 4700 surface ocean years. By this time globally averaged temperature and salinity

are changing less than 0.1 degree and 0.01 ppt per thousand years, respectively. At the

end of this spinup, both cases are integrated with equal tracer and baroclinic steps and

no deep ocean acceleration to minimize any time splitting errors.
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Figure 5.1: The topography used in the global runs. The value is the number of model
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Figure 5.2: Annual mean surface wind stress data from Hellerman and Rosenstein
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Figure 5.3: Zonal mean initial temperature from Levitus. (A) Global. (B) Atlantic.

(C) Paci�c.
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Figure 5.4: Zonal mean initial salinity from Levitus. (A) Global. (B) Atlantic. (C) Paci�c.
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Figure 5.6: Global average temperature versus time.

5.2 Temperature and Salinity

The time history of the global mean temperatures and salinities are shown in Fig-

ure 5.6 and Figure 5.7, respectively. Both the temporal evolution and the �nal values are

very similar between the two cases and to similar published cases. The slightly longer time

for the reduced grid case to reach an equilibrium value is most likely due to the di�erent

timesteps used rather than to di�erences in the numerics. The �nal values of salinity are

both roughly 34.5 ppt. Final temperatures show some di�erence, with the standard case

having value of 5.89 degrees and the reduced case a value of 5.95 degrees. This di�erence

is very small compared to deviation from the initial, data derived condition of around

4 degrees. The excessively warm and fresh ocean resulting from these model runs is typ-

ical of Bryan-Cox type ocean models with simple horizontal and vertical mixing schemes

(see [12], [16], [24], and [21]).

More detailed results of temperature are shown in the zonal mean plots of Figure 5.8
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Figure 5.7: Global average salinity versus time.

through Figure 5.10. Comparison with the initial conditions shows that the deeper regions

are much too warm and that the thermocline is much too di�used. The global zonal mean

di�erence of temperature clearly shows that the reduced grid case is warmer than the

standard case throughout most of the domain. The largest di�erences of over a tenth of a

degree occur in the southern and deep ocean as well as near the bottom at the location of

the interface at 60 degrees north. The Paci�c basin mean shows the same di�erence in the

southern and deep ocean, but the presence of mostly land at 60 degrees north eliminates

the e�ect of the reduced grid interface. However, in the Atlantic the di�erence is positive

nearly everywhere, and the e�ect of the interface below 2000 m is nearly 0.2 degrees.

The topography at the 60 degree north reduced grid interface changes by one level across

more than half of the ocean cells at that latitude. The di�erences in vertical velocity and

convective adjustment due to the change in reduced grid resolution likely are made even

more prominent by this topographical feature. The di�erences are, however, fairly small

and don't a�ect the overall temperature distribution signi�cantly.
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Analogous plots for salinity are shown in Figure 5.11 through Figure 5.13. Comparison

with the initial conditions shows that the deep ocean is too fresh as well as being too

warm. Like the temperature, an increase in salinity from the standard to the reduced case

is seen in the southern and deep ocean as well as at the 60 degree north interface. The

salinity feature at 60 degrees north in both the standard and reduced global zonal means

of Figure 5.11 is not due to the reduced grid interface. It is an artifact of the averaging

process due to the presence of land in the Paci�c basin there combined with the relatively

large di�erence in salinity structure between the two basins. The di�erence of up to 0.025

parts per thousand is apparently caused by the interface in the Atlantic basin in the same

manner as the temperature di�erence described above. Again, while the structure of the

salinity di�erences is obviously caused by the reduced grid method, the magnitude of the

di�erence is such that there is little e�ect on the overall distributions.

The surface tracers are restored to observed values as described above. However, if

there are large di�erences between the standard and reduced grid surface tracer values,

there is an implied di�erence in the transfer of heat and fresh water into and out of the

ocean surface. Figure 5.14 and Figure 5.15 show the values and di�erences of the surface

temperature and salinity. The largest di�erences occur in the regions of the reduced

grid resolution, as expected. However, they are largely localized to individual cells, and

those cells don't show systematic di�erences but both positive and negative di�erences

instead. The cause of the largest di�erences being isolated in individual cells is most

likely the convective adjustment algorithm, which operates only when density values in

a single column reach unstable conditions (see Section 2.3.5). When convection occurs,

comparatively high levels of mixing can occur. The large individual surface di�erences are

located in regions where convection is expected to take place, e.g. near Antarctica and in
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the North Atlantic. And since the columns of the reduced grid are 3 to 9 times larger

than those of the standard grid, it is expected that convection will occur in a substantially

di�erent manner.
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Figure 5.8: Global zonal mean temperature. (A) Standard grid. (B) Reduced grid.

(C) Reduced - Standard grid.
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Figure 5.9: Atlantic zonal mean temperature. (A) Standard grid. (B) Reduced grid.

(C) Reduced - Standard grid.
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Figure 5.11: Global zonal mean salinity. (A) Standard grid. (B) Reduced grid. (C) Re-

duced - Standard grid.
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Figure 5.12: Atlantic zonal mean salinity. (A) Standard grid. (B) Reduced grid. (C) Re-

duced - Standard grid.
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Figure 5.14: Surface temperature. (A) Standard grid. (B) Reduced grid. (C) Reduced -

Standard grid.
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Figure 5.15: Surface salinity. (A) Standard grid. (B) Reduced grid. (C) Reduced -

Standard grid.
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Flow Direction Latitudes Longitudes Standard Reduced

Drake Passage Zonal 85 S { 50 S 70 W 139 133

South of Africa Zonal 85 S { 30 S 20 E 140 139

Sub-Australian Zonal 85 S { 30 S 130 E 161 159

Paci�c Meridional 32 S 120 E { 60 W 22.1 22.3

Table 5.3: Flows in the global run. Units are Sverdrups.

5.3 Surface Height

The surface heights and di�erence are shown in Figure 5.16. The largest di�erences

are at the southern reduced grid interface. In this region there is a strong gradient in the

height from south to north. Di�erences are both positive and negative with the largest of

each located at and just downstream from the Drake Passage. The e�ect of the southern

interface di�erences continues northward into the standard resolution region as far as

40 degrees south, though there is very little impact throughout most of the low latitudes.

The largest height di�erences are up to a few percent in magnitude.

5.4 Circulation

As noted previously, the southern reduced grid interface is located in the middle of the

strong 
ow known as the Antarctic circumpolar current (ACC). In this region, the lack of

continental barriers allows the 
ow to proceed essentially uninterrupted around the whole

of the Antarctic continent. The results of the limited basin runs indicated that this 
ow

might see the most in
uence from the reduced grid. Table 5.3 shows the computed values

of total 
ows at three locations of the ACC as well as one other Paci�c basin location. As

evident by these numbers, the reduced grid case has a 1 to 4 percent decrease in the ACC

at the three locations. The meridional 
ow at 32 degrees south between Australia and
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Figure 5.16: Surface height. (A) Standard grid. (B) Reduced grid. (C) Reduced -

Standard grid
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South America shows a di�erence of less than 1 percent. Note that because the Bering

Strait is closed this 
ow is equal to the Indonesian through
ow (that between Australia

and Asia) as well.

Meridional overturning is shown globally in Figure 5.17 and for the Atlantic and

Indopaci�c basins in Figure 5.18 and Figure 5.19. Overall the overturning is very nearly

the same for the standard and reduced grid cases. The di�erences that appear in the

comparisons are not necessarily caused directly by the reduced grid interfaces and are the

result less of changes in overturning strength than slight shifts in position.

A closer look at the velocities at the southern reduced grid interface is given in

Figure 5.20 and Figure 5.21, showing the zonal and meridional barotropic velocities at

60 degrees south. The peak zonal velocity at the Drake Passage is evident just west of 300

degrees longitude and shows good agreement between the two cases. The slightly lower

velocity of the reduced grid case can be seen between 220 and 280 degrees longitude as

well as between 320 and 340 degrees longitude. The largest discrepancy appears just east

of the Drake Passage, where the barotropic current turns northward. The reduced grid

meridional velocity is �rst lower and then slightly higher than the standard grid between

310 and 340 degrees longitude. Figure 5.22 and Figure 5.23 show the averaged velocity

of the �rst four layers, i.e. the upper 118.5 meters, also at 60 degrees south latitude. The

surface 
ow and the barotropic 
ow are very similar, and the same di�erences pertain.
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Figure 5.17: Global meridional overturning. (A) Standard grid. (B) Reduced grid. (C) Re-

duced - Standard grid.
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Figure 5.18: Atlantic meridional overturning. (A) Standard grid. (B) Reduced grid.

(C) Reduced - Standard grid.
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Figure 5.19: Paci�c meridional overturning. (A) Standard grid. (B) Reduced grid. (C) Re-

duced - Standard grid.
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Figure 5.20: Depth averaged zonal velocity at the reduced grid interface located at 60 de-

grees south.
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Figure 5.21: Same as Figure 5.20 except showing meridional velocity.
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Figure 5.22: Zonal velocity averaged over the top 118.5 m at the reduced grid interface
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Figure 5.23: Same as Figure 5.22 except showing meridional velocity.
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5.5 Parallel Timing Results

All of the simulations discussed here were performed on LLNL's ASCI Blue Paci�c

computer, which consists of hundreds of shared memory processor (SMP) nodes, each

containing four 332 MHz PowerPC 604e processors and 1.5 GBytes of RAM. With up to

two operations per clock cycle, the theoretical peak node performance is 2.656 GigaOPS.

The processor to memory bandwidth is 2.1 TBytes/s, and the node to node bandwidth is

150 MBytes/s, bidirectional. There are 16 disk I/O nodes, with a bandwidth to local disk

of 4.7 GBytes/s.

While this architecture supports a \mixed" programming model using shared memory

parallelism on-node and message passing between nodes, the model used here uses a mes-

sage passing model within nodes as well as between nodes. This approach of treating each

processor as if it had its own memory and using MPI to pass messages provides for a more

portable model which can run on a variety of parallel architectures. The resulting code

is simpler, not having to implement two di�erent forms of parallelism, but the additional

overhead of passing messages within a node also makes it theoretically less eÆcient.

Timing routines in the code enable the tracking of total time, time within major

parts of the code, and time spent in communication routines. The major parts of the

code which are included in these results are the barotropic (surface height and barotropic

velocities), baroclinic, and tracer (temperature and salinity) steps. All other parts of

the code are included in the miscellaneous category. The totals in each category include

communication. Additionally, the total time spent in communication is totaled on its own

to get an estimate of the overhead which the parallel con�guration requires.

Timing tests were made using a �xed number of steps in the same con�guration as the
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# PEs Total Barotropic Baroclinic Tracer Misc. Comm. % Comm.

1 1980 586 574 650 168 0 0

2 1120 319 336 373 96.1 88.3 7.88

4 638 164 165 214 95.7 135 21.1

8 367 99.5 91.0 121 55.4 114 31.1

16 199 50.6 48.6 67.4 32.6 82.0 41.2

32 105 32.4 24.7 33.2 14.7 52.0 49.5

60 67.4 28.3 13.4 15.0 10.7 34.8 51.6

116 51.6 25 8.05 10.4 8.02 31.5 61.1

Table 5.4: Standard grid timing results, broken down into model components. Times are

in seconds.

# PEs Total Barotropic Baroclinic Tracer Misc. Comm. % Comm.

1 1630 523 445 493 172 0 0

2 885 295 228 264 98.3 29.1 3.29

4 470 172 113 132 53.1 45.2 9.62

8 260 99.3 59.1 70.7 31.2 38.7 14.9

16 149 62.3 31.1 36.0 19.6 46.2 31.0

32 93.5 46.5 17.5 18.6 10.9 39.9 42.7

61 72.9 43.0 11.7 11.7 6.54 44.9 61.6

120 66.7 41.7 7.01 9.08 8.94 46.4 69.6

Table 5.5: Reduced grid timing results, broken down into model components. Times are

in seconds.



205

steps/min

32 64168

Reduced

128

Processors

Standard

256

32

64

128

512

16

421
8

Figure 5.24: Comparison of Standard and Reduced grid parallel execution speed.

global model runs presented earlier in the chapter. Note that the number of steps is �xed,

not the integration time. Therefore the di�erence in allowable timesteps between the two

cases is not a factor in these tests. The raw timing numbers for both the standard and

reduced cases are shown in Table 5.4 and Table 5.5 for various processor con�gurations.

Note that for decompositions of more that 32 processors, the standard and reduced cases

use slightly di�erent numbers of processors. This is due to the di�erence between the

decomposition restrictions of the standard and reduced model combined with the dropping

of processors for subdomains which contain only land points. Refer back to Section 2.4

and Section 3.5 for details.

As can be seen in the tables, the reduced grid executes more quickly for all con�g-

urations up to 32 processors. This is shown graphically in Figure 5.24. The reasons for

the slowing of the reduced grid code above 32 processors are given below. The percentage

speedup of the reduced grid over the standard grid model is shown in Figure 5.25. The

reduced grid is faster than the standard grid by as much as 29 percent, with an average
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Figure 5.25: Percent speedup of the reduced grid compared to the standard grid.

speedup of 21.5 percent. In Section 5.1 it was shown that the reduced grid uses nearly

21 percent fewer cells. Though the standard grid uses a �ltering step and the reduced grid

requires interface calculations, the speedup of the reduced grid over the standard is about

equal to the reduction in the number of cells required to cover the spherical domain. This

indicates that this implementation of the reduced grid introduced no great ineÆciency

into the model.

To get a practical idea of just how much computer time it takes to \spin up" an ocean

model to equilibrium, we can use Figure 5.24 to estimate the computer time required for

a 48 processor run to execute 4000 surface tracer years. At a timestep of 6 hours, as used

in the standard case here, this takes the IBM machine nearly 17 days of round-the-clock

calculation. For the run described, well over a month was actually needed to achieve the

4800 year run due to practical constraints. By comparison, the reduced grid run needed

one-quarter of the time due to its larger time steps.

A perfectly eÆcient implementation of a code on a parallel computer would see a
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Figure 5.26: Comparison of Standard and Reduced grid parallel speedup.

linear speedup as the number of processors was increased. That is, doubling the number

of processors would halve the execution time. De�ne the parallel speedup as

SN =
T1

TN
; (5.1)

where T1 is the execution time with one processor, and TN is the execution time with N

processors. Then SN = N for perfect speedup.

A comparison of the parallel speedup for the two global cases is shown in Figure 5.26.

The dashed line represents perfect speedup. The reduced case shows speedup closer to

the ideal for low processor numbers but signi�cantly poorer speedup at higher processor

numbers. The poorer speedup at higher processor numbers is also the reason for the slower

execution speed relative to the standard case. The relative speedup is explained by the

relative coarseness of the two cases. At 60 processors the standard grid has about 163

cells per processor in the two dimensional barotropic calculations. The reduced grid has

fewer than 130 cells per processor. Therefore the amount of computation compared to
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of the number of processors between the standard and reduced grid cases.

communication is lower for the reduced grid. This is shown in Figure 5.27.

That this is the reason for the poorer scaling is revealed in the breakdown of the timing

into model components. Figure 5.28 shows the same parallel speedup of the standard case

as Figure 5.26, but includes the curves for the individual model components separately.

Figure 5.29 shows the same data for the reduced grid case. In both cases, the baroclinic and

tracer model components show a signi�cantly better parallel speedup than the barotropic

component. The baroclinic and tracer components of the standard case show a deviation of

the speedup from the ideal at low processor numbers, then fairly consistent speedup all the

way up to the highest numbers. The same components of the reduced case show excellent

speedup for low processor numbers that smoothly decreases. Both the standard and

reduced cases have comparable speedup at high processor numbers for these components.

The barotropic component, however, shows much larger di�erences between the stan-

dard and reduced cases, and it is this component that contributes the most to the overall

di�erences between model cases. In the standard case, this component follows the others
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until the processor count reaches 32, then a sudden fallo� in the speedup occurs. The

reduced case has smooth but further from ideal behavior throughout the test range. Both

demonstrate nearly 
at speedup curves at the highest numbers of processors. The main

di�erence between the barotropic component of the model and the others is its two dimen-

sional nature. As mentioned above, the ratio of computation to communication a�ects

the speedup, and this component has the lowest ratio due to its lower dimensionality.

The fact that the barotropic component of the reduced grid case shows an earlier and

larger decrease in the speedup is in part a result of the larger amount of communication

required in this model step with the reduced grid as well as the resulting larger commu-

nication to computation ratio from the reduction in the number of cells with the reduced

grid. The reduced grid requires communication during certain interface operations (see

Section 3.3) which lowers the computation to communication ratio. While similar addi-

tional communication steps are required in the other model components for the reduced

grid, the standard case also has extra communication required in the �ltering calculations

for those components. Since there is no �ltering of barotropic quantities in the standard

grid runs presented here, a larger discrepancy between the reduced and standard cases is

seen. It is noteworthy that the addition of extra \ghost" zones at the subdomain bound-

aries, which are often required for more sophisticated advection schemes and the like,

would eliminate the extra communication required by the reduced grid.

As mentioned in Section 5.1 runs were made with a quick implementation of �ltering

for the variables of the barotropic equations. As no attempt was made to make the �ltering

eÆcient for parallel runs, it is no surprise that the runs show very poor speedup. Table 5.6,

Figure 5.30, and Figure 5.31 show the results of this case, which is given to demonstrate

the drastic e�ects of the load imbalance and required communication time of a simple



211

# PEs Total Barotropic Baroclinic Tracer Misc. Comm. % Comm.

1 2060 675 570 651 169 0 0

2 1170 365 334 371 96.2 84.3 7.21

4 1200 701 177 216 105 611 50.9

8 932 653 91.1 125 64.2 638 68.5

16 857 697 49.2 67.3 43.6 696 81.2

32 757 675 24.1 32.6 24.6 659 87.1

60 575 522 13.7 20.6 17.8 522 90.8

116 713 662 8.16 20.3 22.4 668 93.7

Table 5.6: Standard grid, barotropic �ltered timing results, broken down into model

components. Times are in seconds.
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of the number of processors for the standard grid with and without �ltering of barotropic

quantities.

implementation of �ltering on the speedup.

Parallel scalability refers to the e�ects on execution time of increasing both the num-

ber of processors and the problem size simultaneously. For example, increasing the reso-

lution by a factor of two in all three dimensions, reducing the timestep by a factor of two,

and then increasing the number of processors used by the eight would result in an identical

execution time if the model had perfect scalability. The need for global communication

in an algorithm is greatly detrimental to the scalability. While no tests are given here, it

is noted that the explicit nature of the model numerics and the local-only communication

requirements of the reduced grid method indicate a theoretically scalable model.
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Chapter 6

Conclusions

6.1 Summary

This dissertation has detailed the design, implementation, and use of a reduced grid

method in a parallel global ocean general circulation model. This method addressed

the need for increased computational eÆciency in ocean modeling in two major ways:

decreasing the number of grid cells required for discretizing the sphere and increasing the

length of the stability limited time step without resorting to �ltering of model variables.

The reduced grid method was given in detail for the Lawrence Livermore National

Laboratory's parallel ocean general circulation model. This model is very similar to many

widely used models as it is based on the popular Bryan-Cox model. The method of

implementation has been chosen so as to minimize the impact of the method on the existing

code and to take advantage of the existing domain decomposition method for parallel

processing. It has been shown that by the addition of a small number of steps using

general interface operations, the existing numerical formulations can be used relatively

unmodi�ed. The interface operations are very similar to the mesh interaction of the
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popular adaptive mesh re�nement (AMR) method with the modi�cations necessary for

the staggered layout of model variables used.

The resulting reduced grid model was tested for a basin of limited extent with forcing

ranging from very simple wind stress to complete wind and thermohaline forcing based on

observations. Two types of reduced grid interface were tested in the �rst runs, as well as

four di�erent types of interpolation at the interfaces. These options were narrowed down

to the one that produced the best results, the \type-1" interface with linear interpolation

of model variables. Comparison of results with a limited basin showed that while the

in
uence of the interface could be seen in somewhat \noisy" velocities along the poorly

resolved western boundary, the overall model result was well behaved. The surface height,

overturning circulation, and temperature and salinity �elds in the two halves of the domain

were very near those of the corresponding constant resolution cases.

Two global runs were integrated with realistic topography and forcing to an equilib-

rium solution. A standard case used constant resolution combined with �ltering of the

baroclinic and tracer variables. A reduced grid case used a grid with four resolution re-

gions joined by three interfaces and no �ltering of model variables. Comparisons of the

resulting general circulation and thermohaline �elds again showed only small changes due

to the reduced grid, even though the southernmost interface was purposely located in the

middle of the strong Antarctic circumpolar current. The largest e�ect was a few percent

reduction in the strength of this current at the Drake passage, though other regions saw

much smaller changes in large scale 
ow. Tracer �elds had small systematic changes, and

the largest tracer changes were for individual cells due to the operation of convective ad-

justment over model columns of di�erent sizes for the two cases. This change in column

processes had little in
uence on the overall solution.
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Timing results for various domain decompositions were described for LLNL's ASCI

Blue Paci�c computer. The reduction in the number of cells for the global domain with

the reduced grid provided a corresponding reduction in the amount of computer time

required per model step. The parallel speedup of the model as the number of processors

increased was somewhat better than the standard case until the smaller number of cells

resulted in a lower computation to communication ratio. However, for moderate numbers

of processors, the larger allowable time step of the reduced grid model and the higher

speed per step combine to see a dramatic | up to four times | reduction in the time to

achieve model equilibrium.

6.2 Future Work

For the global run described in Chapter 5, the reduced grid method was able to achieve

very similar model results with a very signi�cant reduction in computation time. However,

to see more general use in the ocean modeling �eld, some additional model components

would need to be adapted to the reduced grid. Isopycnal mixing parameterizations, which

simulate the natural mixing of model quantities along contours of constant density rather

than just horizontally and vertically and have become standard in recent years, need to be

included in the reduced grid model. Likewise, an ice model, which simulates the formation,

melting, and movement of sea ice, would also need to be included in a production reduced

grid model.

The current research also points to exciting and potentially signi�cant future projects.

Combined with what has been learned from nested grid modeling, the success of this

reduced grid model for long time integrations could lead to the application of composite
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meshes to the �eld of global ocean general circulation modeling. Higher resolution could

be applied to regions which have important topological features a�ecting the global scale


ow which normally wouldn't be resolved, and narrow boundary currents might bene�t

from increased resolution across their narrow widths, possibly resulting in more realistic

transport of heat toward the poles. More work needs to be done to generalize the ocean

code for the 
exible application of these ideas, and to do so without loss of eÆciency. But

the constant limitations of computer power in the �eld of climate modeling will continue to

demand such improvements in methods to get the most e�ective use of available resources.
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Appendix A

Numerical Reference

A.1 Conservation

For long time integrations of the equations of 
uid 
ow and ocean 
ow in particular,

certain conservation properties are important. Quantities such as momentum, tempera-

ture, and salinity need to be conserved to prevent unphysical sources or sinks which could

severely a�ect the solutions after long integration times. It has also been shown to be de-

sirable to use �nite di�erence formulations that conserve kinetic energy and the variance of

temperature and salinity in the absence of dissipative terms. Arakawa �rst showed, in [2],

that a form of \nonlinear" instability could be avoided if this conservation constraint was

imposed on the energy. The following synopsis follows that of Bryan in [11].

Consider the incompressible advection equation given by

@q

@t
+r � (u q) = 0; (A.1)

where u is the velocity and q is the advected quantity. With the domain divided into N
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cells with volumes given by �n, integrate (A.1) over each cell to give

@

@t

Z
q dV = �

I
q u � n dS; (A.2)

where n is the unit normal vector at the cell boundary. Using

Qn =
1

�n

Z
qn dV; (A.3)

for the average value of qn over the cell, (A.2) becomes

�n
@Qn

@t
= �

I
q u � n dS: (A.4)

If each cell has M faces with area and normal velocity of Am and um, respectively, conti-

nuity gives

MX
m=1

umAm = 0: (A.5)

(A.4) can be approximated by

�n
@Qn

@t
= �

MX
m=1

qmumAb; (A.6)

where qm is the value of q at the mth face. This is the 
ux form of the approximation

used in all of the discrete forms of Section 2.3.

The total amount of the quantity q in the domain is given by

I1 =

NX
n=1

Qn�n; (A.7)

and the second moment by

I2 =

NX
n=1

Q2
n�n: (A.8)

Summing (A.6) over all of the cells in the domain yields

@

@t

NX
n=1

�nQn = �
NX
n=1

MX
m=1

qmumAm; (A.9)
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which can be rewritten using (A.7) to give

@I1

@t
= �

NX
n=1

MX
m=1

qmumAm: (A.10)

Since qm, um, and Am are values de�ned on the faces, they each occur for two cells in

the summation with opposite signs for the velocity, except for the faces on the domain

boundary. With the condition of no normal 
ow at the domain boundary, those velocities

are zero. Then all of the terms in the summation cancel or are zero, and

@I1

@t
= 0: (A.11)

So by using the 
ux form to approximate our equations, the total quantity will be con-

served.

Similarly, multiplying (A.6) by Qn and summing over all cells yields

@I2

@t
= �2

NX
n=1

MX
m=1

qmQnumAm: (A.12)

In general, this does not sum to zero. However, using the average value of q in neighboring

cells as the value of qm on the interface, i.e.

qb =
Qn +Qm

2
; (A.13)

then (A.12) can be written as

@I2

@t
= �

NX
n=1

"
Q2
n

MX
m=1

umAm +

MX
m=1

QnQmumAm

#
: (A.14)

The continuity equation, (A.5), shows that the �rst term is zero. The second term is again

made of pairs of equal values with opposite signs for the velocity for interior faces and

zero velocity values for boundary faces. Thus by using the average value of (A.13),

@I2

@t
= 0; (A.15)

and second moments will be conserved. If q is momentum, then kinetic energy is conserved,

and for temperature or salinity, the variance is conserved.
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A.2 Accuracy

It is desirable for the solution of a �nite di�erence method to accurately represent the

solution of the di�erential equation it is approximating. A method is called \consistent"

when the di�erence equation approaches the di�erential equation as the time and space

di�erences, �t and �x, approach zero. This section gives analyses of the accuracy of

methods representative of the ocean model and the reduced grid.

A.2.1 Leapfrog Time Di�erencing

Starting with the linear advection equation

ut + aux = 0; (A.16)

and discretizing with centered di�erences in time and space gives

un+1
j � un�1j +

ak

h

�
unj+1 � unj�1

�
= 0; (A.17)

where k and h are the time and space steps, respectively.

Taylor expanding terms, and writing u(x; t) as u,

u(x; t+ k) = u+ kut +
k2

2
utt +

k3

6
uttt +

k4

24
utttt +O(k5) (A.18)

u(x; t� k) = u� kut +
k2

2
utt �

k3

6
uttt +

k4

24
utttt +O(k5) (A.19)

u(x+ h; t) = u+ hux +
h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx +O(h5) (A.20)

u(x� h; t) = u� hux +
h2

2
uxx �

h3

6
uxxx +

h4

24
uxxxx +O(h5): (A.21)

Then these expressions can be substituted into (A.17) to �nd the truncation error, � .

2ut +
k2

3
uttt +O(k4) +

a

h

�
hux +

h3

3
uxxx +O(h5)

�
= �: (A.22)
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Making use of the advection equation itself, the �rst terms on each side cancel, leaving

� =
k2

3
uttt +

ah2

3
uxxx +O(h4): (A.23)

Again using (A.16) and calculating multiple mixed derivatives,

uxxt + auxxx = uxtt + auxxt = uttt + auxtt = 0; (A.24)

allows the expression of the time derivative in (A.22) in terms of a spatial derivative,

uttt = �auxtt = a2uxxt = �a3uxxx; (A.25)

giving

� = �
k2a3

3
uxxx +

ah2

3
uxxx +O(h4)

=
k2a3

3
uxxx

�
h2

k2a2
� 1

�
+O(h4):

(A.26)

So it can be seen that the method is second order accurate in space and time, with the

largest error term being a dispersive term.

A.2.2 Euler Backward Time Di�erencing

Again discretizing the linear advection equation, (A.16), using the two-step Euler

backward method, described in Section 2.3.9, with centered di�erences in space gives

u�m = unm �
ak

2h

�
unm+1 � unm�1

�
(A.27)

un+1
m = unm �

ak

2h

�
u�m+1 � u�m�1

�
: (A.28)

Substituting (A.27) into (A.28) yields

un+1
m = unm �

ak

2h

�
unm+1 � unm�1

�
+

�
ak

2h

�2 �
unm+2 � 2unm + unm�2

�
: (A.29)
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Expanding in a Taylor series about unm,

u+ kut +
k2

2
utt +O

�
k3
�
=

u�
ak

2h

�
2hux +O

�
h3
��
+

�
ak

2h

�2 �
(2h)2uxx +O

�
h4
��
;

(A.30)

which simpli�es to

ut +
k

2
utt +O

�
k2
�
= �aux + a2kuxx +O

�
h2
�
: (A.31)

Again using the di�erentiating the advection equation,

utt = �auxt = a2uxx; (A.32)

allowing (A.31) to be written as

ut = �aux +
a2k

2
uxx +O

�
k2; h2

�
: (A.33)

Thus the Euler backward method is �rst-order accurate in time, with an e�ective di�usivity

of a2k=2 which decreases as the time step is reduced.

A.2.3 Reduced Grid Interface

Calculating a �rst derivative in the y-direction on the �ne side of the Cartesian-

coordinate interface shown in Figure A.1 gives

Æyu6;2 =
1
2
(~u6;3 + u6;2)�

1
2
(u6;2 + u6;1)

h2
; (A.34)

where ~u is a value obtained by interpolation. The interpolation formulas of Section A.4

allow writing this value in terms of the true value, e.g.

~u6;3 = u6;3 +O
�
hI1
�
; (A.35)

where I is the order of accuracy of the interpolation method. This gives

Æyu6;2 =
1
2
(u6;3 + u6;2)�

1
2
(u6;2 + u6;1)

h2
+O

�
hI1
h2

�
: (A.36)
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u7;1u5;1 u6;1

h2

Figure A.1: An Interface

Expanding each term about u6;2 as done above in the example of centered di�erences gives

Æyu6;2 = uy +O

�
h22;

hI1
h2

�
: (A.37)

Similarly, calculating a second derivative in the y-direction on the �ne side of the

interface gives

Æyyu6;2 =
(~u6;3 � u6;2)� (u6;2 � u6;1)

h22
(A.38)

=
(u6;3 � u6;2)� (u6;2 � u6;1)

h22
+O

�
hI1
h22

�
(A.39)

= uyy +O

�
h22;

hI1
h22

�
: (A.40)

On the coarse side of the interface, the 
uxes used at the southern face are given by

the average of the �ne 
uxes at the interface. So the �rst derivative is given by

ÆyU5;3 =
1
2
(U5;4 + U5;3)�

1
3

�
1
2
(~u4;3 + u4;2) +

1
2
(U5;3 + u5;2) +

1
2
(~u6;3 + u6;2)

�
h2

: (A.41)

Again using interpolated values for ~u4;3 and ~u6;3 of order h
I
1, this becomes

ÆyU5;3 =
1

6h2
(3U5;4 + 2U5;3 � u4;3 � u6;3 � u4;2 � u5;2 � u6;2) + O

�
hI1
h2

�
: (A.42)
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Expanding terms about U5;3 gives

ÆyU5;3 = uy �
h21
2h2

uxx +O

�
h22;

hI1
h2

�
: (A.43)

Similarly, for the second derivative on the coarse side of the interface,

ÆyyU5;3 =
(U5;4 � U5;3)�

1
3
[(~u4;3 � u4;2) + (U5;3 � u5;2) + (~u6;3 � u6;2)]

h22
(A.44)

=
1

3h22
(3U5;4 � 4U5;3 � u4;3 + u4;2 + u5;2 � u6;3 + u6;2) + O

�
hI1
h22

�
(A.45)

= uyy �
h21
h2
uxxy +O

�
h22;

hI1
h22

�
: (A.46)

These results show that the interface numerics will be unconditionally consistent with

third order accuracy of the interpolation formula and conditionally consistent with second

order accuracy. That is, with linear interpolation, consistency strictly requires that h1 go

to zero faster that h2. The use of no interpolation to preserve second moments, as detailed

in Section A.1, leads to an inconsistent scheme at the interface and potentially large errors.

This is in fact what is seen in the limited basin tests of Section 4.1. The truncation error

on the coarse side of the interface shows that regardless of the interpolation scheme used,

there will be local errors of less than second order in both the advective and di�usive

terms.

A.3 Stability

It is obviously desirable for the solution of a �nite di�erence method to approach

the solution of the di�erential equation it is approximating. Therefore, if the solution

to di�erential equation remains bounded for all time, the di�erence equation should also

remain bounded as it is integrated forward. A method is called \unstable" if there exist

initial solutions for which the �nite di�erence solution becomes unbounded as the time
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level goes to in�nity. This section will demostrate stability for linearized example equations

comparable to those used in the ocean model.

A.3.1 Leapfrog Method for Advection

Looking now at the advection terms, the one-way wave equation,

@u

@t
+ c

@u

@x
= 0; (A.47)

is discretized with a leapfrog in time, centered in space method to yield

vn+1
m � vn�1m

2k
+ c

vnm+1 � vnm�1
2h

= 0; (A.48)

or

vn+1
m = vn�1m � cr(vnm+1 � vnm�1); (A.49)

where k and h are the time step and spatial grid size, respectively, r = k=h, and super-

scripts and subscripts indicate time level and grid index, respectively.

The initial condition can be expressed as a Fourier series,

v0m =

NX
n=0

Ane
ibnmh; m = 0; 1; : : : ; N; (A.50)

with bn = n�=Nh and Nh = L. Since (A.47) is linear, only the propagation of one Fourier

component need be considered, since the individual components may be superimposed.

As time increases, the propagation of this term may be written as

vnm = eibmhe�nk = eibmhgn; (A.51)

where g = e�k and � is, in general, a complex constant. g is known as the ampli�cation

factor.
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Since the exact solution of (A.47) does not grow in time, the �nite di�erence equation,

(A.49), will be stable if junmj remains bounded for all n � J as h and k go to zero. A

necessary and suÆcient condition for this is

jgj � 1: (A.52)

Substituting (A.51) into (A.49) gives

eibmhgn+1 = eibmhgn�1 � cr[eib(m+1)hgn � eib(m�1)hgn]: (A.53)

Dividing by eibmh gives

gn+1 = gn�1 � crgn(eibh � e�ibh)

= gn�1 � 2icr sin(bh)gn;

(A.54)

which, with the addition of the expression

gn = (1)gn + (0)gn�1; (A.55)

can be written as a system of equations0
BBB@
gn+1

gn

1
CCCA = G

0
BBB@

gn

gn�1

1
CCCA ; (A.56)

where

G =

0
BBB@
�2icr sin(bh) 1

1 0

1
CCCA : (A.57)

For a multistep problem, the ampli�cation factor is replaced by an ampli�cation matrix,

and likewise the stability criterion becomes

maxj�ij � 1; (A.58)
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where the �i are the eigenvalues of the matrix G.

The eigenvalues are given in this case by

�� = �icr sin(bh) �
p
1� c2r2 sin2 bh: (A.59)

If c2r2 sin2 bh > 1, the square root term is imaginary, and j��j > 1, indicating instability.

When c2r2 sin2 bh � 1, which in general requires cr � 1, then

j��j
2 = c2r2 sin2 bh+ (1� c2r2 sin2 bh)

= 1:

(A.60)

Thus the stability condition is

k �
h

c
: (A.61)

Note that as long as the stability condition is met, (A.60) shows that the damping factor

will always be one. Thus no modes are damped from the solution. Often some damping of

selected modes is desired, in which case other time stepping schemes are used (see Euler

Backward below).

A.3.2 Euler Backward Method for Advection

As the mixing timesteps in the model use a backward Euler timestepping scheme (see

Section 2.3.9), the stability of that method for an example equation will be given here.

Again using the linear advection equation, (A.47), along with centered di�erences, the

Euler backward method described in Section 2.3.9 in discrete form is given by

un
0

m = unm �
ck

2h

�
unm+1 � unm�1

�
(A.62)

un+1
m = unm �

ck

2h

�
un

0

m+1 � un
0

m�1

�
; (A.63)
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where k is the timestep and h is the grid spacing. Substituting unm = gneibmh into (A.62)

gives

un
0

m =

�
1�

ck

h
i sin(bh)

�
unm: (A.64)

This is then substituted into (A.63) to give

un+1
m = unm �

ck

2h

�
1�

ck

h
sin(bh)

� �
unm+1 � unm�1

�
; (A.65)

yielding

g = 1� i�(1 � i�) = 1� i�� �2; (A.66)

where � = ck
h
sin(bh). The method will be stable if jgj � 1, i.e. if

p
�4 � �2 + 1 � 1; (A.67)

which is satis�ed if j�j � 1, giving the stability condition

k �
h

c
: (A.68)

This method is sometimes referred to as a Matsuno scheme in meteorology. The

damping factor shows that this scheme will damp in a wave-number dependent manner

when the equality in (A.68) does not hold. For a wavelength of 2h, there is no damping,

and as wavelength increases the damping diminishes.

A.3.3 Leapfrog Method for Di�usion

Now turning to the stability of the di�usion equation

@u

@t
= a

@2u

@x2
; (A.69)
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use the same leapfrog in time method to get

vn+1
m � vn�1m

2k
= a

vnm+1 � 2vnm + vnm�1
h2

; (A.70)

or

vn+1
m = vn�1m + as(vnm+1 � 2vnm + vnm�1); (A.71)

where s = 2k=h2. Substituting (A.51) into (A.71) gives

eibmhgn+1 = eibmhgn�1 + as[eib(m+1)hgn � 2eibmhgn + eib(m�1)hgn]: (A.72)

Dividing by eibmh gives

gn+1 = gn�1 + asgn(eibh � 2 + e�ibh)

= gn�1 + 4as sin2(bh=2)gn: (A.73)

Again, the additional expression

gn = (1)gn + (0)gn�1; (A.74)

may be used to write a system of equations0
BBB@
gn+1

gn

1
CCCA = G

0
BBB@

gn

gn�1

1
CCCA ; (A.75)

where

G =

0
BBB@
4as sin2(bh=2) 1

1 0

1
CCCA : (A.76)

The eigenvalues of this system are

�� = 2as sin2(bh=2) �

q
4a2s2 sin4(bh=2) + 1; (A.77)
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so

j��j
2 = 1 + 8a2s2 sin2(bh=2) � 4as sin2(bh=2)

q
4a2s2 sin4(bh=2) + 1: (A.78)

Thus one of the eigenvalues will always be greater than one, so the method is uncondi-

tionally unstable.

A.3.4 Leapfrog Method for Advection-Di�usion

Proceeding toward the ocean model equations, which here are simpli�ed to a combined

advection-di�usion equation,

@u

@t
+ c

@u

@x
= a

@2u

@x2
; (A.79)

the leapfrog method can be used with the di�usion terms lagged in time, i.e.

un+1
m = un�1m � cr(unm+1 � unm�1) + as(un�1m+1 � 2un�1m + un�1m�1): (A.80)

This is essentially the leapfrog method for the advection terms combined with a forward-

time method for the di�usion terms with a time step of 2k.

Substituting (A.51) into (A.80) and dividing by eibmh gives

gn+1 = gn�1 � 2icr sin(bh)gn � 4as sin2(bh=2)gn�1

= �2icr sin(bh)gn + [1� 4as sin2(bh=2)]gn�1:

(A.81)

Thus resulting in the system 0
BBB@
gn+1

gn

1
CCCA = G

0
BBB@

gn

gn�1

1
CCCA ; (A.82)

where

G =

0
BBB@
�2icr sin(bh) 1� 4as sin2(bh=2)

1 0

1
CCCA ; (A.83)



231

with eigenvalues

�� = �icr sin(bh)�

q
1� 4as sin2(bh=2) � c2r2 sin2 bh: (A.84)

If c2r2 sin2 bh > 1 then the square root term is imaginary, and j��j > 1. If c2r2 sin2 bh � 1,

which in general requires cr � 1, then the square root term will be real if

4as sin2(bh=2) + c2r2 sin2 bh � 1; (A.85)

which is, in general, true if

4as+ c2r2 =
8ka+ c2k2

h2
� 1: (A.86)

This results in

j�j = 1� 4as sin2(bh=2); (A.87)

and stability requires that 2as � 1, or

k �
h2

4a
: (A.88)

So the requirements for stability include (A.61) and (A.88) which are the requirements for

the advection and di�usion terms individually, with the additional requirement of (A.86).

But note that if

h2

8a
� k �

h2

4a
; (A.89)

then (A.88) is satis�ed, but (A.86) is not. The stability condition of (A.86) is more

restrictive than the individual conditions for advection and di�usion considered separately,

(A.61) and (A.88).
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um+1

h

um�1 um+3
�m+4�m+2�m�m�2
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Figure A.2: Staggered grid for shallow-water equations

A.3.5 Shallow-Water Equations

Consider the one-dimensional linearized shallow-water equations

@u

@t
= �g

@�

@x
(A.90)

@�

@t
= �H

@u

@x
; (A.91)

where H is the depth of the 
uid. Using a staggered arrangement of the variables u and

�, shown in Figure A.2, along with centered di�erences gives

un+1
m � un�1m

2k
= �g

�nm+1 � �nm�1
h

(A.92)

�n+1
m � �n�1m

2k
= �H

unm+1 � unm�1
h

; (A.93)

where k is the timestep and h is the grid spacing. Substituting into (A.92) and (A.93) a

solution of the form

u = Aneibmh (A.94)

� = Bneibmh; (A.95)

gives the equations

Bn+1 = Bn�1 �
4ikH

h
sin(bh)An (A.96)

An+1 = An�1 �
4ikg

h
sin(bh)Bn: (A.97)
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These equations can be written in matrix form as0
BBBBBBBBBB@

An+1

An

Bn+1

Bn

1
CCCCCCCCCCA

= G

0
BBBBBBBBBB@

An

An�1

Bn

Bn�1

1
CCCCCCCCCCA
; (A.98)

where the ampli�cation matrix is given by

G =

0
BBBBBBBBBB@

0 1 �4ikg
h

sin(bh) 0

1 0 0 0

�4ikH
h

sin(bh) 0 0 1

0 0 1 0

1
CCCCCCCCCCA
: (A.99)

The eigenvalues of the ampli�cation matrix are

�4 � 2 (1� �) �2 + 1 = 0; (A.100)

where � = 8gHk2

h2
sin(bh), or

�2 = 1� ��
p
[� (�� 2)]: (A.101)

If � > 2 then there will be an eigenvalue with magnitude greater than one. When � � 2,

the root is imaginary and

j�2j =
p
2�2 � 4�+ 1: (A.102)

Since (A.102) is less than or equal to one if � � 2, the eigenvalues will be less than or

equal to one if � � 2, i.e. if

k �
h

2
p
gH

: (A.103)

This stability condition is analogous to the CFL condition of the advection equation above

with a characteristic velocity of surface gravity waves is
p
gH , and the factor of two arising

from the staggered arrangement of variables.
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Figure A.3: Interpolation geometry

A.4 Interpolation

Section 3.3.4 discussed the general methods of interpolation for use in the reduced

grid model. The source points and destination points and the in
uence of topography and

the grid stagger were outlined. However, the actual formulas for obtaining the interpo-

lated values once the points were de�ned was omitted. Here the details of obtaining the

interpolated values and the accuracy of the results will be given for all of the interpolation

schemes used.

A.4.1 Formulations for Polynomial Interpolation

Here the interpolating polynomials for all cases up to cubic that are used or interpo-

lation of model quantities at grid interfaces will be generated using the classical Lagrange

formula,

P(N�1)(x) =
(x� x2)(x� x3) : : : (x� xN )

(x1 � x2)(x1 � x3) : : : (x1 � xN )
u1 +

(x� x1)(x� x3) : : : (x� xN )

(x2 � x1)(x2 � x3) : : : (x2 � xN )
u2

+ � � �+
(x� x1)(x� x2) : : : (x� xN�1)

(xN � x1)(x2 � x3) : : : (xN � xN�1)
uN ;

(A.104)

which gives a polynomial interpolation of degree N � 1.



235

Since the ratio of resolutions useful | and therefore allowed | is restricted to 3:1,

only the interpolating formulas speci�c to that case are necessary. There will be ten of

them: four linear, four quadratic, and two cubic. Figure A.3 de�nes the quantities used

in all of the cases.

The interpolating polynomials for the values u0 and u00 at x0 and x00, respectively, are

needed for each of the possible combinations of the xi that can occur in the problem, given

the values ui at those points.

The quantities necessary for the linear cases are u0
(1)
(u1; u2), u

0

(1)
(u2; u3), u

00

(1)
(u2; u3),

and u00
(1)
(u3; u4). Using (A.104), these are given by

u0(1)(u1; u2) =
(x0 � x2)

(x1 � x2)
u1 +

(x0 � x1)

(x2 � x1)
u2

=
(4� 3)

(0� 3)
u1 +

(4� 0)

(3� 0)
u2

= �
1

3
u1 +

4

3
u2

(A.105)

u0(1)(u2; u3) =
(x0 � x3)

(x2 � x3)
u2 +

(x0 � x2)

(x3 � x2)
u3

=
(4� 6)

(3� 6)
u2 +

(4� 3)

(6� 3)
u3

=
2

3
u2 +

1

3
u3;

(A.106)

and, by symmetry,

u00(1)(u2; u3) =
1

3
u2 +

2

3
u3 (A.107)

u00(1)(u3; u4) =
4

3
u3 �

1

3
u4: (A.108)

For the quadratic cases, the quantities necessary for the problem are u0
(2)
(u1; u2; u3),
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u00
(2)
(u1; u2; u3), u

0

(2)
(u2; u3; u4), and u

00

(2)
(u2; u3; u4). Calculating these as above yields

u0(2)(u1; u2; u3) =
(x0 � x2)(x

0 � x3)

(x1 � x2)(x1 � x3)
u1 +

(x0 � x1)(x
0 � x3)

(x2 � x1)(x2 � x3)
u2

+
(x0 � x1)(x

0 � x2)

(x3 � x1)(x3 � x2)
u3

=
(4� 3)(4 � 6)

(0� 3)(0 � 6)
u1 +

(4� 0)(4 � 6)

(3� 0)(3 � 6)
u2 +

(4� 0)(4 � 3)

(6� 0)(6 � 3)
u3

= �
1

9
u1 +

8

9
u2 +

2

9
u3

(A.109)

u00(2)(u1; u2; u3) =
(x00 � x2)(x

00 � x3)

(x1 � x2)(x1 � x3)
u1 +

(x00 � x1)(x
00 � x3)

(x2 � x1)(x2 � x3)
u2

+
(x00 � x1)(x

00 � x2)

(x3 � x1)(x3 � x2)
u3

=
(5� 3)(5 � 6)

(0� 3)(0 � 6)
u1 +

(5� 0)(5 � 6)

(3� 0)(3 � 6)
u2 +

(5� 0)(5 � 3)

(6� 0)(6 � 3)
u3

= �
1

9
u1 +

5

9
u2 +

5

9
u3:

(A.110)

And thus by symmetry,

u0(2)(u2; u3; u4) =
5

9
u2 +

5

9
u3 �

1

9
u4 (A.111)

u00(2)(u2; u3; u4) =
2

9
u2 +

8

9
u3 �

1

9
u4: (A.112)

There is only one combination of the points xi for the cubic case, and that is the one

using all four points. Values at both x0 and x00 for the cubic case are needed, giving

u0(3)(u1; u2; u3; u4) =
(x0 � x2)(x

0 � x3)(x
0 � x4)

(x1 � x2)(x1 � x3)(x1 � x4)
u1 +

(x0 � x1)(x
0 � x3)(x

0 � x4)

(x2 � x1)(x2 � x3)(x2 � x4)
u2

+
(x0 � x1)(x

0 � x2)(x
0 � x4)

(x3 � x1)(x3 � x2)(x3 � x4)
u3 +

(x0 � x1)(x
0 � x2)(x

0 � x3)

(x4 � x1)(x4 � x2)(x4 � x3)
u4

=
(4� 3)(4 � 6)(4 � 9)

(0� 3)(0 � 6)(0 � 9)
u1 +

(4� 0)(4 � 6)(4 � 9)

(3� 0)(3 � 6)(3 � 9)
u2

+
(4� 0)(4 � 3)(4� 9)

(6� 0)(6 � 3)(6� 9)
u3 +

(4� 0)(4� 3)(4 � 6)

(9� 0)(9� 3)(9 � 6)
u4

= �
5

81
u1 +

60

81
u2 +

30

81
u3 �

4

81
u4:

(A.113)



237

6h h

u1 u2
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Figure A.4: Interpolation points

Then lastly, and also by symmetry,

u00(3)(u1; u2; u3; u4) = �
4

81
u1 +

30

81
u2 +

60

81
u3 �

5

81
u4: (A.114)

A.4.2 Accuracy of Polynomial Interpolation

A generalized form for the Taylor expansions of the known points, ui, in Figure A.4

about the interpolation point, u0, are used to write

u(x+ nh; t) = u0 + nhu0x +
n2h2

2
u0xx +

n3h3

6
u0xxx +O(h4) (A.115)

u(x� nh; t) = u0 � nhu0x +
n2h2

2
u0xx �

n3h3

6
u0xxx +O(h4): (A.116)

Using no interpolating formula for u0, but setting it to the nearest point, in this case u2

gives

u0(0) = u2 = u0 � 2hu0x +
4h2

2
u0xx �

8h3

6
u0xxx +O(h4)

= u0 +O(h);

(A.117)
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which is a �rst-order accurate value for u0. Again substituting (A.115) and (A.116) for

the terms in (A.106) gives

u0(1)(u2; u3) =
2

3
u02 +

1

3
u03

=
2

3

�
u0 � 2hu0x +

4h2

2
u0xx

�

+
1

3

�
u0 + 4hu0x +

16h2

2
u0xx

�
+O(h3)

= u0 + 4h2u0xx +O(h3) = u0 +O(h2):

(A.118)

And likewise expanding (A.105) gives

u0(1)(u1; u2) = �
1

3
u01 +

4

3
u02

= �
1

3

�
u0 � 8hu0x +

64h2

2
u0xx

�

+
4

3

�
u0 � 2hu0x +

4h2

2
u0xx

�
+O(h3)

= u0 � 8h2u0xx +O(h3) = u0 +O(h2);

(A.119)

showing second-order accuracy for linear interpolation. Moving on to (A.109),

u0(2)(u1; u2; u3) = �
1

9
u1 +

8

9
u2 +

2

9
u3

= �
1

9

�
u0 � 8hu0x +

64h2

2
u0xx �

512h3

6
u0xxx

�

�
8

9

�
u0 � 2hu0x +

4h2

2
u0xx �

8h3

6
u0xxx

�

�
2

9

�
u0 + 4hu0x +

16h2

2
u0xx �

64h3

6
u0xxx

�
+O(h4)

= u0 +
32

3
h3u0xxx +O(h4) = u0 +O(h3)

(A.120)
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shows third-order accuracy for quadratic interpolation. And �nally, expanding (A.113)

u0(3)(u1; u2; u3; u4) = �
5

81
u1 +

60

81
u2 +

30

81
u3 �

4

81
u4

= �
5

81

�
u0 � 8hu0x +

64h2

2
u0xx �

512h3

6
u0xxx +

4096h4

24
u0xxxx

�

+
60

81

�
u0 � 2hu0x +

4h2

2
u0xx �

8h3

6
u0xxx +

16h4

24
u0xxxx

�

+
30

81

�
u0 + 4hu0x +

16h2

2
u0xx �

64h3

6
u0xxx +

256h4

24
u0xxxx

�

�
4

81

�
u0 + 4hu0x +

16h2

2
u0xx �

64h3

6
u0xxx +

10000h4

24
u0xxxx

�

+O(h5)

= u0 �
80

3
h4u0xxxx +O(h5) = u0 +O(h4);

(A.121)

gives fourth-order accuracy for the cubic interpolation.

A.4.3 Cubic Spline Formulation

Cubic spline interpolation gives an interpolation formula which is smooth in the �rst

derivative and continuous in the second derivative within a closed interval of interpolation.

Given a set of known values, uj, for j = 1; : : : ; n, speci�ed at the points xj, assume that

the second derivatives, u00j , are also known. Then an interpolation formula can be written

as

~u(x) = Auj +Buj+1 + Cu00j +Du00j+1; (A.122)
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where primes indicate derivatives with respect to x, and the coeÆcients A, B, C, and D

are de�ned as

A =
xj+1 � x

xj+1 � xj
(A.123)

B = 1�A (A.124)

C =
A
�
A2 � 1

�
(xj+1 � xj)

2

6
(A.125)

D =
B
�
B2 � 1

�
(xj+1 � xj)

2

6
: (A.126)

Notice that A and B are simply the coeÆcients of the linear Lagrange interpolating for-

mula. Taking the �rst derivative of (A.122) gives

~u0 =
uj+1 � uj

xj+1 � xj
�

�
3A2 � 1

�
(xj+1 � xj)

6
u00j +

�
3B2 � 1

�
(xj+1 � xj)

6
u00j+1: (A.127)

Di�erentiating again gives

~u00 = Au00j +Bu00j+1; (A.128)

which shows that the second derivatives take their proper values at the known points,

with a linear relationship in the intervals. However, the values of the second derivatives

are not yet known. Using (A.127) in the intervals [xj�1; xj ] and [xj ; xj+1], set the �rst

derivatives equal to each other at xj . This step will not only provide a means for �nding

the values of u00, but guarantees the continuity of the �rst derivative in the interpolation

formula. For the points j = 2; : : : ; n� 1, the procedure yields

1

6

�
(xj+1 � xj) u

00

j+1 + 2 (xj+1 � xj�1)u
00

j + (xj � xj�1)u
00

j�1

�
=
uj+1 � uj

xj+1 � xj
�
uj � uj�1

xj � xj+1

:

(A.129)

Or, if the grid spacing is constant, i.e. if xj+1�xj = h for all values of j, then this can be

written simply as

u00j+1 + 4u00j + u00j�1 =
6

h2
(uj+1 � 2uj + uj�1) : (A.130)
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At x1 and xn, the second derivatives cannot be found with this formula. The most common

method is to set the second derivatives to zero at the boundaries, giving the \natural"

spline. With these values, (A.129) and (A.130) give a set of n linear equations for the n

unknown second derivatives.

Solving this system, known as a tridiagonal system, is a relatively straightforward

process. The system of equations can be written in matrix form as0
BBBBBBBBBBBBBBBBBBBBBBB@

b1 c1

a2 b2 c2

a3 : :

: : :

: : cn�2

an�1 bn�1 cn�1

an bn

1
CCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBB@

u001

u002

:

:

:

u00n�1

u00n

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

d1

d2

d3

:

:

dn�1

dn

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (A.131)

Then the solution process is given by a two step algorithm.

Algorithm A.4.1. Tridiagonal System Solution

�1 ( b1
�1 (

d1
�1

for j = 2 to n

�j ( bj � aj
cj�1

�j�1

�j (
dj�aj�j�1

�j

u00n ( �n
for j = n� 1 to 1

u00j ( �j �
cj
�j
u00j+1

With the values uj and u
00

j known at the points xj, the interpolation formula given

by (A.122) can be used to obtain interpolated values within the interval [x1; xn].
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A.4.4 Cubic Spline Accuracy

Suppose the interpolated value is calculated for a point midway between two points

where the actual value is known. The interpolated value is given by the formula

~uj+ 1
2
=
uj + uj+1

2
�
h2

16
(zj + zj+1) ; (A.132)

where h = xj+1�xj , the values uj and uj+1 are given, and the values zj and zj+1 are the

calculated second derivatives from the procedure given above. Expanding the �rst term

about the interpolation point gives

uj + uj+1

2
= u+

h2

8
u00 +

h4

192
u(4) +O

�
h6
�
: (A.133)

Di�erentiating twice yields

u00j + u00j+1

2
= u00 +

h2

8
u(4) +O

�
h4
�
; (A.134)

which can be substituted back into (A.133) to give

uj + uj+1

2
= u+

h2

16

�
u00j + u00j+1

�
�
h4

96
u(4) +O

�
h6
�
: (A.135)

Now proceeding to the second term of (A.132), expand the interpolation formula

about xj to give

~u (xj + Æ) + ~u (xj � Æ)

2
= uj +

Æ2

2
u00j +

Æ4

24
u
(4)
j +O

�
Æ6
�
; (A.136)

where the fourth derivative is de�ned only for 0 < Æ < h. Since the second derivative of

the interpolating formula is piecewise linear, the fourth derivative is zero. Remembering

that the interpolation formula returns the known values uj for all j, take the limit

lim
Æ!h�

~u (xj + Æ) + ~u (xj � Æ)

2
=
uj+1 + uj�1

2
= uj +

h2

2
zj +O

�
h6
�
: (A.137)
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A similar expansion for u(x) gives

uj+1 + uj�1

2
= uj +

h2

2
u00j +

h4

24
u
(4)
j +O

�
h6
�
: (A.138)

Subtracting (A.138) from (A.137) gives

zj = u00j +
h2

12
u
(4)
j +O

�
h4
�
: (A.139)

Finally, substituting (A.139) and (A.135) into (A.132) gives

~uj+ 1
2
= u+

h2

16

�
u00j + u00j+1

�
�
h4

96
u(4) �

h2

16

�
u00j + u00j+1 +

h2

12
u
(4)
j

�
+O

�
h6
�

(A.140)

= u+O
�
h4
�
: (A.141)

Thus cubic spline interpolation is fourth order accurate.

A.5 Filtering

In the ocean model, the allowable timestep is increased by �ltering short wavelengths

from the solutions at high latitudes. The previous sections have shown that the decreasing

longitudinal grid spacing at high latitudes results in more restriction on the timesteps that

will remain stable with various �nite di�erence discretizations. Here an example will be

given of how removing short wavelengths can increase the timestep allowed by the linear

stability condition.

Discretizing the di�usion equation,

@u

@t
= a

@2u

@x2
; (A.142)

by forward-in-time and centered-in-space �nite di�erences gives

un+1
m � unm

k
= a

unm+1 � 2unm + unm�1
h2

; (A.143)
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where k is the timestep and h is the grid spacing. The stability condition for wavenumber

component b is found to be

k �
h2

2a sin2 bh
2

: (A.144)

The smallest resolvable wavelength is 2h, corresponding to a wavenumber of �
h
, and giving

the stability condition

k �
h2

2a
: (A.145)

But the stability condition is progressively less restrictive for longer wavelengths. There-

fore, if we �lter out (by Fourier �ltering or an equivalent method) the smallest wavelengths,

the maximum allowable stable timestep increases.

For the discrete model, �ltering is applied only at the higher latitudes. The lowest

latitudes at which to starting �ltering are set by a variable for 
exibility, and a reference

latitude, �ref , is speci�ed also, usually just smaller than the starting latitude for the �lter.

Then for each strip in the region thus de�ned, the model variables to be �ltered are Fourier

transformed decomposed in the following manner, outlined in [50]. For a variable q de�ned

on a strip with l cells at latitude �, de�ne a critical wavenumber by

k = l
cos�Tj

cos�ref
: (A.146)

Then Fourier coeÆcients are calculated by

A0 =
1

l

lX
i=1

qi (A.147)

Al =
2

l

lX
i=1

qi cos
2�mi

l
for m = 1; : : : ;

k

2
� 1 (A.148)

A k
2

=
1

l

lX
i=1

qi cos(�i) (A.149)

Bl =
2

l

lX
i=1

qi sin
2�mi

l
for m = 1; : : : ;

k

2
� 1 (A.150)
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and the �ltered variable is reconstructed by the truncated series

~qi = A0 +

k
2X

m=1

Am cos
2�mi

l
+

k
2
�1X

m=1

Bm sin
2�mi

l
: (A.151)

Due to the no 
ux boundary condition of tracers and the zero boundary condition on

velocities, only the cosine and sine components are needed, respectively. For strips that

are unbroken by land and thus periodic, both Fourier components are needed. By this

procedure, wavelengths smaller than those which are stable at the reference latitude are

eliminated in the �ltering region. See [67] for more details on �ltering in the context of

the shallow-water equations.

The �ltering procedure can introduce oscillations due to the Gibbs e�ect. This can

be lessened by adding a weight to the Fourier series to act as a window and produce a

smoother result. Also the �ltering procedure is greatly complicated on parallel distributed

memory architectures. Each strip may lie within one or more subdomains, and some may

require communication beyond the nearest neighbors. Combined with the limited region

in which �ltering is applied, load balancing of the model and scalability become diÆcult

problems to solve. See [46] for more on these issues in an atmospheric model.

In the global runs of Chapter 5, �ltering is applied for the standard, or base, case

at latitudes of 60 degrees and higher. The tracers and baroclinic momentum are �ltered

at each timestep, with a reference latitude of 51 degrees for tracers and 54 degrees for

the momentum. However, barotropic momentum and surface height are not �ltered, thus

limiting the barotropic timestep directly and the baroclinic timestep through limitations

on the amount of subcycling allowed by stability. See Section 5.1 and Section 5.5 for

reasons, details, and implications.
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